A translocation that moves a gene from an area of euchromatin to heterochromatin would typically cause a(n) reduction in the expression of the gene.
<h3>What is euchromatin?</h3>
- A kind of chromatin that is sparsely packed, enriched in genes, and frequently engaged in transcription is called euchromatin.
- Contrasting with heterochromatin, which is compact and less accessible for transcription, is euchromatin.
- The human genome has 92% euchromatic DNA.
<h3>What is heterochromatin?</h3>
- Heterochromatin, often known as condensed DNA or densely packed DNA, has many different types.
- Between constitutive heterochromatin and facultative heterochromatin, these variations fall on a spectrum. Both contribute to how genes are expressed.
- Eukaryotic genomes contain heterochromatin, which serves a variety of purposes including regulating gene expression and preventing DNA replication and repair.
Learn more about euchromatin here:
brainly.com/question/12318627
#SPJ4
8 protons because a element always has the same number of protons as its atomic number
Diploid cells. Meiosis is the process of cell division by
which involving gametes. Cell division is just the same for sperm and egg
cells, but they have distinguishable descriptions and labels in the process. Spermatogenesis
is for the males’ sperm cells and oogenesis is the process for females’ egg
cells. The cell division of meiosis involves the two phases, respectively
meiosis I and meiosis II. Meiosis I like mitosis is the cell division that
produces diploid cells. These diploid cells are cells that contain a complete
pair of chromosomes which is 46. The result is two diploid cells after the
first meiosis. To provide clear explanation, in contrast haploid cells only
contain 23 chromosomes and are created after meiosis II which is 4 in number.
Answer:
The sedimentary rock limestone which contains carbonate mineral Calcite and the metamorphic rocks which contain carbonate mineral Aragonite are the examples of rocks which react strongly with hydrochloric acid.
Explanation:
Rocks are naturally occurring structures formed on the Earth's crust and are composed of aggregate minerals. Classification of rocks: Igneous rocks - formed by cooling of magma on Earth's crust or seabed (basalts, gabbros, granite, etc), sedimentary rocks - formed over time by the accumulation of sediments from the weathering of existing rocks or fragments of minerals and organisms (mudstone, sandstone, shale, limestone, dolostone, siltstone, etc) and metamorphic rocks - transformed rocks formed from the existing rocks that are subjected to large pressures and temperatures (schists, gneiss, marble, etc).
The carbonate minerals like calcite, dolomite, aragonite, etc react with hydrochloric acid and release carbon dioxide gas bubbles. Calcite (calcium carbonate), which is found in igneous, metamorphic, and sedimentary rocks in a varying proportion reacts strongly with hydrochloric acid. So, the sedimentary rock Limestone which mainly contains calcite react strongly with the acid while Dolostone which mainly contains dolomite (calcium magnesium carbonate) reacts less vigorously. Another carbonate mineral aragonite, found in metamorphic rocks also reacts strongly with hydrochloric acid.