If alpha and beta be 2 distinct roots satisfying equation a cos theta+bsin theta=c,Show that cos (alpha+beta)=(a^2-b^2)/(a^2+b^2
)
1 answer:
Cos(α+β)=cosα∗cosβ−sinα∗sinβ
acosθ+bsinθ=c
acosθ=c−bsinθ
Square both sides
a2(1−sinθ)=c2+b2sin2θ−2∗c∗b∗sinθ
(b2+a2)sin2θ−2∗c∗b∗sinθ+c2−a2=0
Product of Roots =ca
sinα∗sinβ=c2−a2a2+b2
Now use similar method to have an equation in terms of cos2θ
acosθ+bsinθ=c
acosθ−c=−bsinθ
a2cos2θ+c2−2∗a∗ccosθ=b2(1−cos2θ)
(a2+b2)cos2θ−2∗a∗cosθ∗c+c2−b2=0
Product of Roots =ca
cosα∗cosβ=c2−b2a2+b2
Now substitute the values in First Equation
cos(α+β)=cosα∗cosβ−sinα∗sinβ
⟹c2−b2+a2−c2a2+b2
⟹a2−b2a2+b2
You might be interested in
I cant really see it can u type the equation?
Answer:
6.5
Step-by-step explanation:
N=25 You just divide 300 and 12 to get 25!
Answer:
m=-3
Step-by-step explanation:
m=y2-y1/x2-x1
m=16-10/5-7
m=6/-2
m=-3
a
Step-by-step explanation:
because it's is very important