Moles of phosphoric acid would be needed : 0.833
<h3>Further explanation</h3>
Given
15 grams of water
Required
moles of phosphoric acid
Solution
Reaction(decomposition) :
H3PO4 -> H2O + HPO3
mol water (H2O :
= mass : MW
= 15 g : 18 g/mol
= 0.833
From the equation, mol ratio H3PO4 = mol H2O = 1 : 1, so mol H3PO4 = 0.833
Answer:
1s22s22p6<u>3s23p4</u>
Explanation:
Sulfur is located in the p block and has 6 valence electrons (the 2 exponent on the 3s and the 4 exponent on the 3p add up to 6)
Answer: 2 lone pairs, square planar
Explanation:
Using the VSEPR ( Valence Shell Electron Pair Repulsion)Theory
To calculate the number of lone pairs electron can be done using the formula;
Number of electrons = ½ (V+N-C+A)
V mean valency of the central atom
N means number of monovalent bonding atoms
C means charge on cation
A means charges on anion
Therefore, to calculate the number of lone pair electron C=A=0;
Number of electrons = ½ (8+4) = 12/2 = 6
Number of bonding pair = 4
Number of lone pairs of electron = 6-4 = 2
The hybridrization of the compound is sp3d2 because the number of electrons around the central atom is 6.
The geometry of the compound is square planar and this is because of the repulsion between the bonding pair of electrons and lone pair of electrons which causes the lone pair of electrons to lie in a perpendicular plane in order to acquire stability.
From ideal gas equation PV = nRT, V/T = nR/P ==> V/T = constant. Therefore V1/T1 = V2/T2 ==> 7.8/698 = V2/308. V = 3.44L {TEMPERATURE IN KELVIN = 273 + 425 AND 35 = 698 AND 308}
Answer:
Earth's atmosphere is divided into five main layers: the exosphere, the thermosphere, the mesosphere, the stratosphere and the troposphere.
Explanation: