Answer:
n° = 62°
p° = 62°
q° = 118°
v° = 84°
w° = 138°
Step-by-step explanation:
angle ABC is 118°
so
m° + 118° = 180
m° = 180° - 118°
m° = 62°
n° = m° = 62° (corresponding angles are equal since AB is parallel to DC, and BC)
p° = n° = 62° (vertical angles are equal)
q° + n° = 180° (linear pair angles)
q° + 62° = 180°
q° = 180° - 62°
q° = 118°
v° + 96° = 180° (linear pair angles)
v° = 180° - 96°
v° = 84°
w° + 42° = 180 (linear pair angles)
w° = 180° - 42°
w° = 138°
Answer:
.50 sence per bag im sure?
Step-by-step explanation:
Answer:
<h2><DEF = 40</h2><h2><EBF = <EDF = 56</h2><h2><DCF = <DEF =40</h2><h2><CAB = 84</h2>
Step-by-step explanation:
In triangle DEF, we have:
<u>Given</u>:
<EDF=56
<EFD=84
So, <DEF =180 - 56 - 84 =40 (sum of triangle angles is 180)
____________
DE is a midsegment of triangle ACB
( since CD=DA(given)=>D is midpoint of [CD]
and BE = EA => E midpoint of [BA] )
According to midsegment Theorem,
(DE) // (CB) "//"means parallel
and DE = CB/2 = FB =CF
___________
DEBF is a parm /parallelogram.
<u>Proof</u>: (DE) // (FB) ( (DE) // (CB))
AND DE = FB
Then, <EBF = <EDF = 56
___________
DEFC is parm.
<u>Proof</u>: (DE) // (CF) ((DE) // (CB))
And DE = CF
Therefore, <DCF = <DEF =40
___________
In triangle ACB, we have:
<CAB =180 - <ACB - <ABC =180 - 40 - 56 =84(sum of triangle angles is 180)

Answer:
c is answer.....................