The answer is X= -6 , -8 I believe
Answer:
0
Step-by-step explanation:
Solution for cosx=-3/2 equation:
cos((3*pi)/5)*cos((3*pi)/20) = 0
(60*x^3)/(60*x^5) = 0
cos((3*pi)/5)*cos((3*pi)/20) = 0
cos((3*x)/5)*cos((3*x)/20) = 0
1.5/100 = 0
The maximum value of the objective function is 26 and the minimum is -10
<h3>How to determine the maximum and the minimum values?</h3>
The objective function is given as:
z=−3x+5y
The constraints are
x+y≥−2
3x−y≤2
x−y≥−4
Start by plotting the constraints on a graph (see attachment)
From the attached graph, the vertices of the feasible region are
(3, 7), (0, -2), (-3, 1)
Substitute these values in the objective function
So, we have
z= −3 * 3 + 5 * 7 = 26
z= −3 * 0 + 5 * -2 = -10
z= −3 * -3 + 5 * 1 =14
Using the above values, we have:
The maximum value of the objective function is 26 and the minimum is -10
Read more about linear programming at:
brainly.com/question/15417573
#SPJ1
Answer:
m<2 = 73
Step-by-step explanation:
Since <1 and <2 are complementary (which means that they equal 90), all you have to do is subtract 17 from 90 to find your answer:
90 - 17 = 73
thus, m<2 = 73