C represents carrots. t represents time in hours.
c= 125t
To find this equation, I found the unit rate, or how many carrots were chooped per hour. I then plugged it into slope intercept form (y=mx+b) where the y intercept was 0 because she can chop 0 carrots in 0 hours.
The amount that will be in the account after 30 years is $188,921.57.
<h3>How much would be in the account after 30 years?</h3>
When an amount is compounded annually, it means that once a year, the amount invested and the interest already accrued increases in value. Compound interest leads to a higher value of deposit when compared with simple interest, where only the amount deposited increases in value once a year.
The formula that can be used to determine the future value of the deposit in 30 years is : annuity factor x yearly deposit
Annuity factor = {[(1+r)^n] - 1} / r
Where:
- r = interest rate
- n = number of years
$2000 x [{(1.07^30) - 1} / 0.07] = $188,921.57
To learn more about calculating the future value of an annuity, please check: brainly.com/question/24108530
#SPJ1
Firstly, we'll fix the postions where the
women will be. We have
forms to do that. So, we'll obtain a row like:

The n+1 spaces represented by the underline positions will receive the men of the row. Then,

Since there is no women sitting together, we must write that
. It guarantees that there is at least one man between two consecutive women. We'll do some substitutions:

The equation (i) can be rewritten as:

We obtained a linear problem of non-negative integer solutions in (ii). The number of solutions to this type of problem are known: ![\dfrac{[(n)+(m-n+1)]!}{(n)!(m-n+1)!}=\dfrac{(m+1)!}{n!(m-n+1)!}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5B%28n%29%2B%28m-n%2B1%29%5D%21%7D%7B%28n%29%21%28m-n%2B1%29%21%7D%3D%5Cdfrac%7B%28m%2B1%29%21%7D%7Bn%21%28m-n%2B1%29%21%7D)
[I can write the proof if you want]
Now, we just have to calculate the number of forms to permute the men that are dispposed in the row: 
Multiplying all results:

I will try to help okay i will send my friends to help