Answer:
x = 4
Step-by-step explanation:
Hello!
We can solve for x by expanding the parentheses and isolating x.
<h3>Solve for x</h3>
- 3x - 2(2x - 5) = 2(x + 3)-8
- 3x - 4x + 10 = 2x + 6 - 8
- -x + 10 = 2x - 2
- 10 = 3x - 2
- 12 = 3x
- x = 4
The value of x is 4.
Answer:
5:3
Step-by-step explanation:
The ratio is 5 to 3
chocolate being 5 and oatmeal being 3
Answer:
Option B.
Step-by-step explanation:
Remember that the profit is defined as the difference between the revenue and the cost.
So, having a profit y = 0 means that the woodworker did not win nor lose anything.
Then the zeros of the function, the values of x such that the graph intersects the x-axis, are the prices such that she does not win nor loss anything.
In the graph we can see that the zeros are at:
x = 15 (the first one)
x = 70 (the second one)
so the zeros are at x = 15 and x = 70, and these are the prices such that the profit is zero, so at these prices she does not make nor lose money.
The correct option is B.
Answer:
31 u jest read it
Step-by-step explanation:
Using the equation of the test statistic, it is found that with an increased sample size, the test statistic would decrease and the p-value would increase.
<h3>How to find the p-value of a test?</h3>
It depends on the test statistic z, as follows.
- For a left-tailed test, it is the area under the normal curve to the left of z, which is the <u>p-value of z</u>.
- For a right-tailed test, it is the area under the normal curve to the right of z, which is <u>1 subtracted by the p-value of z</u>.
- For a two-tailed test, it is the area under the normal curve to the left of -z combined with the area to the right of z, hence it is <u>2 multiplied by 1 subtracted by the p-value of z</u>.
In all cases, a higher test statistic leads to a lower p-value, and vice-versa.
<h3>What is the equation for the test statistic?</h3>
The equation is given by:

The parameters are:
is the sample mean.
is the tested value.
- s is the standard deviation.
From this, it is taken that if the sample size was increased with all other parameters remaining the same, the test statistic would decrease, and the p-value would increase.
You can learn more about p-values at brainly.com/question/26454209