Answer:
%
Explanation:
The ethanol combustion reaction is:
→
If we had the amount (x moles) of ethanol, we would calculate the oxygen moles required:

Dividing the previous equation by x:

We would need 3.30 oxygen moles per ethanol mole.
Then we apply the composition relation between O2 and N2 in the feed air:

Then calculate the oxygen moles number leaving the reactor, considering that 0.85 ethanol moles react and the stoichiometry of the reaction:

Calculate the number of moles of CO2 and water considering the same:


The total number of moles at the reactor output would be:

So, the oxygen mole fraction would be:
%
Answer:
3.4752 moles of water
Explanation:
There are 13.84 mole in one cup of water so,
13.84 divided by 4= 3.4725 :)
Answer:
[Cl⁻] = 0.016M
Explanation:
First of all, we determine the reaction:
Pb(NO₃)₂ (aq) + MgCl₂ (aq) → PbCl₂ (s) ↓ + Mg(NO₃)₂(aq)
This is a solubility equilibrium, where you have a precipitate formed, lead(II) chloride. This salt can be dissociated as:
PbCl₂(s) ⇄ Pb²⁺ (aq) + 2Cl⁻ (aq) Kps
Initial x
React s
Eq x - s s 2s
As this is an equilibrium, the Kps works as the constant (Solubility product):
Kps = s . (2s)²
Kps = 4s³ = 1.7ₓ10⁻⁵
4s³ = 1.7ₓ10⁻⁵
s = ∛(1.7ₓ10⁻⁵ . 1/4)
s = 0.016 M
<span>1) Boiling water for pasta-> physical
2) Digesting food -> chemical
3) Soda goes "flat" -> physical
4) Stretching a rubber band -> physical
5) Grilling a hamburger -> chemical
6) Adding sugar to tea -> physical
7) Adding lemon to tea -> physical
8) Mowing the grass -> physical
9) The smell of perfume "wafts" across the room -> physical
10) Candle wax melts -> physical
11) Breaking glass-> physical
12) Making cement-> chemical
13) Lighting a match-> chemical
14) Water is absorbed by a paper towel-> physical
15) Firefly glows in the dark-> chemical
16) Snow melts-> physical
17) Bleaching your hair-> chemical
18) Turning on a light bulb-> physical
19) Milk goes sour-> chemical
20) Shooting off fireworks-> chemical</span>