1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
5

When graphed, which function has a horizontal asymptote at 4?

Mathematics
1 answer:
galben [10]3 years ago
8 0

Answer:

<em>Correct answer: C. f(x) = 2(3)x + 4</em>

<u><em>(please note we changed the expression of the function to exponential form which we believe is the correct form of the question)</em></u>

Step-by-step explanation:

<u>Horizontal Asymptote</u>

The graph of a function is said to have a horizontal asymptote at y=a if one or both the following limits exist

\lim\limits_{x \rightarrow \infty}f(x)=a

\lim\limits_{x \rightarrow -\infty}f(x)=a

The horizontal asymptotes are horizontal lines to which the function tends when x increases or decreases without limits.

Let's analyze each one of the options provided:

A.  f(x) = 2x -4

\lim\limits_{x \rightarrow \infty}(2x-4)=+\infty

\lim\limits_{x \rightarrow -\infty}(2x-4)=-\infty

No horizontal asymptote

B.  f(x) = -3x + 4

\lim\limits_{x \rightarrow \infty}(-3x+4)=-\infty

\lim\limits_{x \rightarrow -\infty}(-3x+4)=\infty

No horizontal asymptote

C. f(x) = 2\cdot 3^x + 4

\lim\limits_{x \rightarrow \infty}(2\cdot 3^x + 4)=2\cdot 3^\infty + 4=\infty

\lim\limits_{x \rightarrow \infty}(2\cdot 3^x + 4)=2\cdot 3^{-\infty} + 4=0+4=4

This function has a horizontal asymptote at y=4

D. 3\cdot 2^x -4

\lim\limits_{x \rightarrow \infty}(3\cdot 2^x - 4)=3\cdot 2^\infty - 4=\infty

\lim\limits_{x \rightarrow \infty}(3\cdot 2^x- 4)=3\cdot 2^{-\infty} - 4=0-4=-4

This function has a horizontal asymptote at y=-4

Correct answer: C.

You might be interested in
1) Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given
neonofarm [45]

Answer:

Check below, please

Step-by-step explanation:

Hello!

1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this

x_{1}=2\\x_{2}=2-\frac{f(2)}{f'(2)}=2.5\\x_{3}=2.5-\frac{f(2.5)}{f'(2.5)}\approx 2.4166\\x_{4}=2.4166-\frac{f(2.4166)}{f'(2.4166)}\approx 2.41421\\x_{5}=2.41421-\frac{f(2.41421)}{f'(2.41421)}\approx \mathbf{2.41421}

2)  Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.

We can rewrite it as: x^2-2x-4=0

x_{1}=-1.1\\x_{2}=-1.1-\frac{f(-1.1)}{f'(-1.1)}=-1.24047\\x_{3}=-1.24047-\frac{f(1.24047)}{f'(1.24047)}\approx -1.23607\\x_{4}=-1.23607-\frac{f(-1.23607)}{f'(-1.23607)}\approx -1.23606\\x_{5}=-1.23606-\frac{f(-1.23606)}{f'(-1.23606)}\approx \mathbf{-1.23606}

As for

x_{1}=3.2\\x_{2}=3.2-\frac{f(3.2)}{f'(3.2)}=3.23636\\x_{3}=3.23636-\frac{f(3.23636)}{f'(3.23636)}\approx 3.23606\\x_{4}=3.23606-\frac{f(3.23606)}{f'(3.23606)}\approx \mathbf{3.23606}\\

3) Rewriting and calculating its derivative. Remember to do it, in radians.

5\cos(x)-x-1=0 \:and f'(x)=-5\sin(x)-1

x_{1}=1\\x_{2}=1-\frac{f(1)}{f'(1)}=1.13471\\x_{3}=1.13471-\frac{f(1.13471)}{f'(1.13471)}\approx 1.13060\\x_{4}=1.13060-\frac{f(1.13060)}{f'(1.13060)}\approx 1.13059\\x_{5}= 1.13059-\frac{f( 1.13059)}{f'( 1.13059)}\approx \mathbf{ 1.13059}

For the second root, let's try -1.5

x_{1}=-1.5\\x_{2}=-1.5-\frac{f(-1.5)}{f'(-1.5)}=-1.71409\\x_{3}=-1.71409-\frac{f(-1.71409)}{f'(-1.71409)}\approx -1.71410\\x_{4}=-1.71410-\frac{f(-1.71410)}{f'(-1.71410)}\approx \mathbf{-1.71410}\\

For x=-3.9, last root.

x_{1}=-3.9\\x_{2}=-3.9-\frac{f(-3.9)}{f'(-3.9)}=-4.06438\\x_{3}=-4.06438-\frac{f(-4.06438)}{f'(-4.06438)}\approx -4.05507\\x_{4}=-4.05507-\frac{f(-4.05507)}{f'(-4.05507)}\approx \mathbf{-4.05507}\\

5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.

x_{n+1}=x_{n}-\frac{f'(n)}{f''(n)}

f(x)=x^6-x^4+3x^3-2x

\mathbf{f'(x)=6x^5-4x^3+9x^2-2}

\mathbf{f''(x)=30x^4-12x^2+18x}

For -1.2

x_{1}=-1.2\\x_{2}=-1.2-\frac{f'(-1.2)}{f''(-1.2)}=-1.32611\\x_{3}=-1.32611-\frac{f'(-1.32611)}{f''(-1.32611)}\approx -1.29575\\x_{4}=-1.29575-\frac{f'(-1.29575)}{f''(-4.05507)}\approx -1.29325\\x_{5}= -1.29325-\frac{f'( -1.29325)}{f''( -1.29325)}\approx  -1.29322\\x_{6}= -1.29322-\frac{f'( -1.29322)}{f''( -1.29322)}\approx  \mathbf{-1.29322}\\

For x=0.4

x_{1}=0.4\\x_{2}=0.4\frac{f'(0.4)}{f''(0.4)}=0.52476\\x_{3}=0.52476-\frac{f'(0.52476)}{f''(0.52476)}\approx 0.50823\\x_{4}=0.50823-\frac{f'(0.50823)}{f''(0.50823)}\approx 0.50785\\x_{5}= 0.50785-\frac{f'(0.50785)}{f''(0.50785)}\approx  \mathbf{0.50785}\\

and for x=-0.4

x_{1}=-0.4\\x_{2}=-0.4\frac{f'(-0.4)}{f''(-0.4)}=-0.44375\\x_{3}=-0.44375-\frac{f'(-0.44375)}{f''(-0.44375)}\approx -0.44173\\x_{4}=-0.44173-\frac{f'(-0.44173)}{f''(-0.44173)}\approx \mathbf{-0.44173}\\

These roots (in bold) are the critical numbers

3 0
2 years ago
The sets G and M are given below.
Varvara68 [4.7K]

union=( -2,-1,0,1,2,5,7,8) intersection= -1,1

6 0
2 years ago
[25 POINTS] The approximate change in the value of f(x) = sqrt(2(x-1)) at x = 3 using differentials with dx = 0.01 is
otez555 [7]

Answer:

\frac{1}{200}

Step-by-step explanation:

<u>Find the derivative of the function when x=3</u>

<u />y=\sqrt{2(x-1)}

\frac{dy}{dx}=\frac{1}{\sqrt{2(x-1)}}

\frac{dy}{dx}=\frac{1}{\sqrt{2(3-1)}}

\frac{dy}{dx}=\frac{1}{\sqrt{2(2)}}

\frac{dy}{dx}=\frac{1}{\sqrt{4}}

\frac{dy}{dx}=\frac{1}{2}

Since the change in the value of the function is dy and we know that the change in x is dx=0.01, then we have:

\frac{dy}{dx}=\frac{1}{2}

dy=\frac{1}{2}dx

dy=\frac{1}{2}(0.01)

dy=\frac{1}{200}

Therefore, the 2nd option is correct

<u />

8 0
2 years ago
PLEASE HELP ME !!! ASAP PLS!!!
tensa zangetsu [6.8K]

Answer:

AI and AJ

Step-by-step explanation:

Opposite rays start at the same point (A) and go in the complete opposite direction

8 0
3 years ago
Read 2 more answers
Which pair of triangles can be proven congruent by SAS?
ivolga24 [154]

Answer:

Second option

Step-by-step explanation:

They have two congruent pairs of sides and one congruent pair of angles.

4 0
2 years ago
Other questions:
  • A philosophy professor assigns letter grades on a test according to the following scheme. A: Top 12% of scores B: Scores below t
    5·1 answer
  • Anything that can be measured or counted
    12·1 answer
  • If you take the point (-4,-2)
    5·1 answer
  • Which number is not equal to 12 12.0. 0.12 or 12.00
    5·2 answers
  • EASYinverse formula !!!<br>R=(a/b)*S<br><br>a=??<br>b=??<br>S=??​
    10·1 answer
  • Help me with this question please
    8·1 answer
  • Please help now it’s important
    8·2 answers
  • Find the slope plz tyy!!!
    13·1 answer
  • I think I have the answer but, I really need help with the steps!
    9·1 answer
  • HELP me pleaseee I can’t do it ima drop
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!