Since you know the ratio of atoms, you can start to put a formula togeter. The formula might look like:<span>
X<span>H2.67
</span></span>but since atoms can't come in fractional amounts, we have to multiply the formula by some number in order to turn 2.67 into a whole #, while still maintaining the ratio. Multiplying 2.67 by 3 yields 8, so the most likely ratio in the molecule is
X3H8<span>so the ratio of 1:2.67 is still maintained. The mass percent tells you that out of every 100g of compound, 91.26g is element X, so the other 8.74g must be H. Dividing each mass by the number of moles in the formula gets us the molar mass of each element (approximately). DIviding 8.74g by 8 gets 1.09, roughly the molar mass of hydrogen. Dividing 91.26g by 3 gets us 30.4, roughly the molar mass of phosphorus. Element X is most likely phosphorus</span>
The answer is relative dating, btw
Oxidation happens at the anode and reduction happens at the cathode.<span />
Answer
is: 1) ccl4, kb = 29.9°c/m, carbon tetrachloride has the greatest boiling point
elevation.
The boiling point elevation is directly
proportional to the molality of the solution according to the
equation: ΔTb = Kb · b.
<span>
ΔTb - the boiling point
elevation.
Kb - the ebullioscopic
constant.
b - molality of the solution.
So the highest boiling poing elevation will be for solution with highest ebullioscopic constant because molality is the same.</span>
The answer would be option 4