<span>A substance that can be separated into two or more substances only by a chemical change is </span><span>known as a </span><span>heterogeneous</span><span> mixture</span>
Answer:
Explanation:
A chemical property describes the ability of a substance to undergo a specific chemical change.
A chemical reaction is a process that occurs when one or more substances are changed into one or more new substances.
Differences
Chemical properties are properties that can be observed or measured when a substance undergoes a chemical change.
Physical properties are properties that can be observed without bringing a chemical change.
Another one
chemical properties; can be used to predict how substances react.
chemical changes; It is mostly used in identifying or describing the substance.
Answer:
0.88 g
Explanation:
Using ideal gas equation to calculate the moles of chlorine gas produced as:-

where,
P = pressure of the gas = 805 Torr
V = Volume of the gas = 235 mL = 0.235 L
T = Temperature of the gas = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
R = Gas constant = 
n = number of moles of chlorine gas = ?
Putting values in above equation, we get:

According to the reaction:-

1 mole of chlorine gas is produced when 1 mole of manganese dioxide undergoes reaction.
So,
0.01017 mole of chlorine gas is produced when 0.01017 mole of manganese dioxide undergoes reaction.
Moles of
= 0.01017 moles
Molar mass of
= 86.93685 g/mol
So,

Applying values, we get that:-

<u>0.88 g of
should be added to excess HCl (aq) to obtain 235 mL of
at 25 degrees C and 805 Torr.</u>
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.
Answer:
ZnS(s) ⇄ S²⁻(aq) + Zn²⁺(aq)
Explanation:
First, we will write the molecular equation, since it is easier to balance.
2 HBr(aq) + ZnS(s) ⇄ H₂S(aq) + ZnBr₂(aq)
In the full ionic equation we include all ions and molecular species.
2 H⁺(aq) + 2 Br⁻(aq) + ZnS(s) ⇄ 2 H⁺(aq) + S²⁻(aq) + Zn²⁺(aq) + 2 Br⁻(aq)
In the net ionic equation we include only the ions that participate in the reaction and the molecular species.
ZnS(s) ⇄ S²⁻(aq) + Zn²⁺(aq)