Answer:
If a car skids 66 ft on wet concrete, it will move at 243 ft/s when the brake is applied.
Explanation:
To determine how fast the car was moving, after skidding, the formula below is used:
V = √32*fd
V is the car's speed (ft/s)
d is skid length (ft) = 66 ft
f is the coefficient of friction determined by the material the car was skidding on.
Coefficient of friction for wet concrete is 0.65
V = √32*fd
V = √32 *0.65* 66
V = 242.679 ft/s ≅ 243 ft/s (nearest whole number)
If a car skids 66 ft on wet concrete, it will move at 243 ft/s when the brake is applied.
Answer:


Explanation:
<u>Net Force And Acceleration
</u>
The Newton's second law relates the net force applied on an object of mass m and the acceleration it aquires by

The net force is the vector sum of all forces. In this problem, we are not given the magnitude of each force, only their angles. For the sake of solving the problem and giving a good guide on how to proceed with similar problems, we'll assume both forces have equal magnitudes of F=40 N
The components of the first force are


The components of the second force are


The net force is


The magnitude of the net force is


The acceleration has a magnitude of



The direction of the acceleration is the same as the net force:


Answer:
c. 1600J
Explanation:
The loss in potential energy of the boy is given by:

where
m = 40 kg is the mass of the boy
g = 9.8 m/s^2 is the acceleration of gravity
is the total change in the height of the boy (4 metres + 2 cm due to the compression of the spring)
Substituting, we find

Answer:
A type of telescope that does not require darkness in order to be able to use it is the refracting telescope
Explanation:
A refracting telescope consists of a lens and an eyepiece collects light which is then focused to present a magnified, bright and clear image.
The incident light on a refracting telescope is bent by refraction such that the light is focused to the focal point.
In refracting telescopes, the image is formed by bending light, that is by refraction.
The refracting telescope technology has been applied to binoculars and camera zoom lenses.