Answer:
a) 7.35 x 10¹³ m/s²
b) 5.03 x 10⁻⁸ sec
c) 9.3 cm
d) 6.23 x 10⁻¹⁸ J
Explanation:
E = magnitude of electric field = 418 N/C
q = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
m = mass of the electron = 9.1 x 10⁻³¹ kg
a)
acceleration of the electron is given as


a = 7.35 x 10¹³ m/s²
b)
v = final velocity of the electron = 3.70 x 10⁶ m/s
v₀ = initial velocity of the electron = 0 m/s
t = time taken
Using the equation
v = v₀ + at
3.70 x 10⁶ = 0 + (7.35 x 10¹³) t
t = 5.03 x 10⁻⁸ sec
c)
d = distance traveled by the electron
using the equation
d = v₀ t + (0.5) at²
d = (0) (5.03 x 10⁻⁸) + (0.5) (7.35 x 10¹³) (5.03 x 10⁻⁸)²
d = 0.093 m
d = 9.3 cm
d)
Kinetic energy of the electron is given as
KE = (0.5) m v²
KE = (0.5) (9.1 x 10⁻³¹) (3.70 x 10⁶)²
KE = 6.23 x 10⁻¹⁸ J
Solid phase. The atoms are tightly packed and vibrate.
Answer:
Nothing
Explanation:
The rich need nothing they already have a lot of stuff, the poor have nothing they are poor and do not have much. Nothing is greater than god and nothing is more evil than the devil.
C because of galvination is sized
Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.