1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
3 years ago
12

Given below is the odd-number function which of the following are equal to o (7)

Mathematics
1 answer:
madam [21]3 years ago
4 0
If it is the answer is A, B, and D
You might be interested in
Indicate the method you would use to prove the two ▲'s ≅. If no method applies, enter "none".
zysi [14]

Answer: None


Step-by-step explanation:

In the given picture , there are two triangles and their corresponding angles are equal.

So by AAA similarity criteria they are similar. But there is no other information is given to prove that they are congruent.

[∵ we know that congruent are similar but similar triangles may not be congruent.]

Therefore, there is no sufficient information to prove them congruent by using any given postulate.

Hence, the answer is "None".



4 0
3 years ago
Read 2 more answers
Match the hyperbolas represented by the equations to their foci.
Arte-miy333 [17]

Answer:

1) (1 , -22) and (1 , 12) ⇔ (y + 5)²/15² - (x - 1)²/8² = 1

2) (-7 , 5) and (3 , 5) ⇔ (x + 2)²/3² - (y - 5)²/4² = 1

3) (-6 , -2) and (14 , -2) ⇔ (x - 4)²/8² - (y + 2)²/6² = 1

4) (-7 , -10) and (-7 , 16) ⇔ (y - 3)²/5² - (x + 7)²/12² = 1

Step-by-step explanation:

* Lets study the equation of the hyperbola

- The standard form of the equation of a hyperbola with

  center (h , k) and transverse axis parallel to the x-axis is

  (x - h)²/a² - (y - k)²/b² = 1

- the coordinates of the foci are (h ± c , k), where c² = a² + b²

- The standard form of the equation of a hyperbola with

  center (h , k) and transverse axis parallel to the y-axis is

  (y - k)²/a² - (x - h)²/b² = 1

- the coordinates of the foci are (h , k ± c), where c² = a² + b²

* Lets look to the problem

1) The foci are (1 , -22) and (1 , 12)

- Compare the point with the previous rules

∵ h = 1 and k ± c = -22 ,12

∴ The form of the equation will be (y - k)²/a² - (x - h)²/b² = 1

∵ k + c = -22 ⇒ (1)

∵ k - c = 12 ⇒ (2)

* Add (1) and(2)

∴ 2k = -10 ⇒ ÷2

∴ k = -5

* substitute the value of k in (1)

∴ -5 + c = -22 ⇒ add 5 to both sides

∴ c = -17

∴ c² = (-17)² = 289

∵ c² = a² + b²

∴ a² + b² = 289

* Now lets check which answer has (h , k) = (1 , -5)

  and a² + b² = 289 in the form (y - k)²/a² - (x - h)²/b² = 1

∵ 15² + 8² = 289

∵ (h , k) = (1 , -5)

∴ The answer is (y + 5)²/15² - (x - 1)²/8² = 1

* (1 , -22) and (1 , 12) ⇔ (y + 5)²/15² - (x - 1)²/8² = 1

2) The foci are (-7 , 5) and (3 , 5)

- Compare the point with the previous rules

∵ k = 5 and h ± c = -7 ,3

∴ The form of the equation will be (x - h)²/a² - (y - k)²/b² = 1

∵ h + c = -7 ⇒ (1)

∵ h - c = 3 ⇒ (2)

* Add (1) and(2)

∴ 2h = -4 ⇒ ÷2

∴ h = -2

* substitute the value of h in (1)

∴ -2 + c = -7 ⇒ add 2 to both sides

∴ c = -5

∴ c² = (-5)² = 25

∵ c² = a² + b²

∴ a² + b² = 25

* Now lets check which answer has (h , k) = (-2 , 5)

  and a² + b² = 25 in the form (x - h)²/a² - (y - k)²/b² = 1

∵ 3² + 4² = 25

∵ (h , k) = (-2 , 5)

∴ The answer is (x + 2)²/3² - (y - 5)²/4² = 1

* (-7 , 5) and (3 , 5) ⇔ (x + 2)²/3² - (y - 5)²/4² = 1

3) The foci are (-6 , -2) and (14 , -2)

- Compare the point with the previous rules

∵ k = -2 and h ± c = -6 ,14

∴ The form of the equation will be (x - h)²/a² - (y - k)²/b² = 1

∵ h + c = -6 ⇒ (1)

∵ h - c = 14 ⇒ (2)

* Add (1) and(2)

∴ 2h = 8 ⇒ ÷2

∴ h = 4

* substitute the value of h in (1)

∴ 4 + c = -6 ⇒ subtract 4 from both sides

∴ c = -10

∴ c² = (-10)² = 100

∵ c² = a² + b²

∴ a² + b² = 100

* Now lets check which answer has (h , k) = (4 , -2)

  and a² + b² = 100 in the form (x - h)²/a² - (y - k)²/b² = 1

∵ 8² + 6² = 100

∵ (h , k) = (4 , -2)

∴ The answer is (x - 4)²/8² - (y + 2)²/6² = 1

* (-6 , -2) and (14 , -2) ⇔ (x - 4)²/8² - (y + 2)²/6² = 1

4) The foci are (-7 , -10) and (-7 , 16)

- Compare the point with the previous rules

∵ h = -7 and k ± c = -10 , 16

∴ The form of the equation will be (y - k)²/a² - (x - h)²/b² = 1

∵ k + c = -10 ⇒ (1)

∵ k - c = 16 ⇒ (2)

* Add (1) and(2)

∴ 2k = 6 ⇒ ÷2

∴ k = 3

* substitute the value of k in (1)

∴ 3 + c = -10 ⇒ subtract 3 from both sides

∴ c = -13

∴ c² = (-13)² = 169

∵ c² = a² + b²

∴ a² + b² = 169

* Now lets check which answer has (h , k) = (-7 , 3)

  and a² + b² = 169 in the form (y - k)²/a² - (x - h)²/b² = 1

∵ 5² + 12² = 169

∵ (h , k) = (-7 , 3)

∴ The answer is (y - 3)²/5² - (x + 7)²/12² = 1

* (-7 , -10) and (-7 , 16) ⇔ (y - 3)²/5² - (x + 7)²/12² = 1

7 0
3 years ago
Help please..<br><br> find the area of the region that lies inside both curves
just olya [345]
Too hard for me. I'm only in 5th grade
7 0
3 years ago
Given f(x) = 6x^4 – 10x^3 + 40x – 50, find f(2)
ASHA 777 [7]
F(x)=6x^4-10x^3+40x-50, plug 2 in for x
f(2)=6(2)^4-10(3)^3+40(2)-50
f(2)=12^4-30^3+80-50
f(2)=20735-27,000+80-50
f(2)=-6,235
4 0
3 years ago
Which statement best explains why the value of this expression is equal to −812y? 414x − 812y − 414x
GarryVolchara [31]
For this case we have the following expression:
 414x - 812y - 414x
 Rewriting we have:
 414x - 414x - 812y
 We group similar terms:
 (414x - 414x) - 812y
 Adding we have:
 0 - 812y
 - 812y
 Answer:
 
The sum of a number and its opposite is 0, and the sum of any number and 0 is the number itself.
5 0
3 years ago
Other questions:
  • the metro train costs $6.30 round trip to ride to work each day. you work 4 days a week (16 days a month). if you can get a mont
    8·1 answer
  • I need some help, please
    7·2 answers
  • What is the solution for the y=x+1 and x=5
    8·2 answers
  • Consider the quadratic function:
    13·1 answer
  • Simplify 7m+8n+9mn+12m​
    6·2 answers
  • Square root &amp; simplifying radicals <br> √30
    12·1 answer
  • Which exponent makes the statement true?
    9·2 answers
  • I need help ASAP please help me
    12·1 answer
  • Kate's math homework had a set of equations and a one-word problem. She took 3 minutes to solve each equation, then 7 minutes to
    8·1 answer
  • Please help me find the answers to these
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!