1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
9

Friends who are your age and share the same interests are called

Physics
2 answers:
Pie3 years ago
6 0
The answer is C, a peer group.
BigorU [14]3 years ago
4 0
The answer is C because a peer is like a friend so it’s a group of friends who like the same thing you like.
You might be interested in
The Heaviside function H is defined by H(t)={0 if t<0, 1 if t≥0 It is used in the study of electric circuits to represent the
Studentka2010 [4]

Answer:

V(t)= 240V* H(t-5)

Explanation:

The heaviside function is defined as:

H(t) =1 \quad t\geq 0\\H(t) =0 \quad t

so we see that the Heaviside function "switches on" whent=0, and remains switched on when t>0

If we want our heaviside function to switch on when t=5, we need the argument to the heaviside function to be 0 when t=5

Thus we define a function f:

f(t) = H(t-5)

The -5 term inside the heaviside function makes sure to displace the function 5 units to the right.

Now we just need to add a scale up factor of 240 V, because thats the voltage applied after the heaviside function switches on. (H(t-5) =1 when t\geq 5, so it becomes just a 1, which we can safely ignore.)

Therefore our final result is:

V(t)= 240V* H(t-5)

I have made a sketch for you, and added it as attachment.  

5 0
3 years ago
A runner traveling with an initial velocity of 1.1 m/s accelerates at a constant rate of 0.8 m/s2fora time of 2.0 s.(a).What is
pychu [463]

Answer:

The final velocity of the runner at the end of the given time is 2.7 m/s.

Explanation:

Given;

initial velocity of the runner, u = 1.1 m/s

constant acceleration, a = 0.8 m/s²

time of motion, t = 2.0 s

The velocity of the runner at the end of the given time is calculate as;

v = u + at

where;

v is the final velocity of the runner at the end of the given time;

v = 1.1 + (0.8)(2)

v = 2.7 m/s

Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.

7 0
2 years ago
Out of aluminum,copper,steel,and glass.Which material do you think will be the best thermal conductor?
Nastasia [14]
I believe it is copper

6 0
3 years ago
A girl is floating in a freshwater lake with her head just above the water. If she weighs 610 N, what is the volume of the subme
Elden [556K]

Answer:

The volume of the submerged part of her body is 0.0622m^{3}

Explanation:

Let's define the buoyant force acting on a submerged object.

In a submerged object acts a buoyant force which can be calculated as :

B=ρ.V.g

Where ''B'' is the buoyant force

Where ''ρ'' is the density of the fluid

Where ''V'' is the submerged volume of the object

Where ''g'' is the acceleration due to gravity

Because the girl is floating we can state that the weight of the girl is equal to the buoyant force.

We can write :

W_{girl}=B (I)

Where ''W'' is weight

⇒ If we consider ρ = 1000\frac{kg}{m^{3}} (water density) and g=9.81\frac{m}{s^{2}} and replacing this values in the equation (I) ⇒

B=W_{girl}

B=610N

ρ.V.g = 610N

1000\frac{kg}{m^{3}}.V.(9.81\frac{m}{s^{2}})=610N (II)

The force unit ''N'' (Newton) is defined as

N=kg.\frac{m}{s^{2}}

Using this in the equation (II) :

(9810\frac{N}{m^{3}}).V =610N

V=\frac{610N}{9810\frac{N}{m^{3}}}

V=0.0622m^{3}

We find that the volume of the submerged part of her body is 0.0622m^{3}

8 0
3 years ago
Kim is ice-skating going 4.6 m/s. What is her velocity after 10 seconds ?
MArishka [77]

This is a uniform rectilinear motion (MRU) exercise.

To start solving this exercise, we obtain the following data:

<h3><u>Data:</u></h3>
  • v = 4.6 m/s
  • d = ¿?
  • t = 10 sec

To calculate distance, speed is multiplied by time.

We apply the following formula: d = v * t.

We substitute the data in the formula: the <u>speed is equal to 4.6 m/s,</u> the <u>time is equal to 10 s</u>, which is left as follows:

\bf{d=4.6\dfrac{m}{\not{s}}*10\not{s} }

\bf{d=46 \ m}

Therefore, the speed at 10 seconds is 46 meters.

\huge \red{\boxed{\green{\boxed{\boldsymbol{\purple{Pisces04}}}}}}

6 0
2 years ago
Other questions:
  • A book weighing 12 n is placed on a table. how much support force does a table exert on the book?
    14·1 answer
  • Which of these statements about a dipole are correct? Select all that are true.
    12·1 answer
  • What should Ben wear to best protect himself during the experiment?
    15·1 answer
  • An organism has 20 chromosomes after fertilization.after meiosis, how many chromosomes would each sex cell have?
    10·1 answer
  • 1-A train travels 100 km to reach town A in one hour and 15 min. The train stops at station A for 45 minutes. Then it travels 15
    13·1 answer
  • Assume a reaction takes 7.5 moles of anhydrous calcium chloride and energy transfer occurs, which we record as 21.2 joules of en
    13·2 answers
  • When an object threw to the free space to make an angle of 25 degree at an initial speed of 15 m/sec, the ball takes time to rea
    11·1 answer
  • Which statement is true about Gram negative organisms?
    6·1 answer
  • What is the resistance of a light bulb if a potential difference of 120 V will produce a current of 0. 5 A in the bulb? 0. 0042
    8·1 answer
  • Newton's first law of motion states: Question 1 options: A body at rest will remain at rest unless acted on by an external force
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!