1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
8

Is this correct or no?

Mathematics
2 answers:
Vikentia [17]3 years ago
8 0

Answer: The steps are not correct in several places. The correct result is "x > 2"

Explanation:

First row: they multiply both sides by 2, but on the right hand side the multiplication should act on the entire term "(3-2x)" so 2(3-2x)=6-4x

Second row should be now: 3x-8 > 6-4x  | now adding 8 to both sides:

Third row should look like this : 3x > 14 - 4x

Fourth row: we want to bring the term 4x to the left so it should be something like this:

3x > 14 - 4x | add "4x" to both sides

which results in

3x + 4x > 14 - 4x + 4x

7 x > 14    | divide both sides by 7

x > 14/7

x > 2

Let me know if you have questions

Tanya [424]3 years ago
4 0
Yes.??? dont really Know sorry
You might be interested in
Ax + bx - 15 = 0;x<br> How do you solve this?
Pani-rosa [81]

Answer:

Step-by-step explanation:

ax+bx-15=0\\=> (a+b)x-15=0\\=>(a+b)x=15\\=>x=\frac{15}{(a+b)}

7 0
3 years ago
90 POINTS!!!!! Given: KLIJ inscr. in k(O),m∠K = 64°, measure of arc LI = 69°, measure of arc IJ = 59°, measure of arc KJ =97°
Kay [80]

In any cyclic quadrilateral, angles opposite one another are supplementary, meaning

m\angle K+m\angle I=m\angle L+m\angle J=180^\circ

and given that \boxed{m\angle K=64^\circ}, we have \boxed{m\angle I=116^\circ}.

By the inscribed angle theorem,

m\angle JLK=\dfrac12m\widehat{KJ}

m\angle ILJ=\dfrac12m\widehat{IJ}

and since

m\angle L=m\angle JLK+m\angle ILJ

we have

m\angle L=\dfrac{97^\circ+59^\circ}2\implies\boxed{m\angle L=78^\circ}

and it follows that

m\angle J=180^\circ-m\angle L\implies\boxed{m\angle J=102^\circ}

5 0
3 years ago
How to use denominators when comparing two fractions with the same numerators
Sholpan [36]
What you would do is take the denominators and multiply them by each other, then multiply the numerators by that same number. So like 4/10 and 4/9. You would say, (denominators) 10x9=90 and (numerators) 4x9=36. So your first fraction would be 36/90. Next, you would take (denominators) 9x10=90 and (numerators) 4x10=40. So your second fraction would become 40/90. Now it's a lot easier to compare. 36/90 < 40/90 would be the answer to my problem. I hope I helped!
4 0
3 years ago
Read 2 more answers
Can anyone help me plz
mario62 [17]

Answer:

4

Step-by-step explanation:

The answer is four because 10% of the whole tray (40) is 4

Equation:  

.1 * 40 = 4

4 0
3 years ago
Suppose that x and y are both differentiable functions of t and are related by the given equation. Use implicit differentiation
stepan [7]

Answer:

Let z = f(x, y) where f(x, y) =0 then the implicit function is

\frac{dy}{dx} =\frac{-δ f/ δ x }{δ f/δ y }

Example:- \frac{dy}{dx}  = \frac{-(y+2x)}{(x+2y)}

Step-by-step explanation:

<u>Partial differentiation</u>:-

  • Let Z = f(x ,y) be a function of two variables x and y. Then

\lim_{x \to 0} \frac{f(x+dx,y)-f(x,y)}{dx}    Exists , is said to be partial derivative or Partial differentiational co-efficient of Z or f(x, y)with respective to x.

It is denoted by δ z / δ x or δ f / δ x

  • Let Z = f(x ,y) be a function of two variables x and y. Then

\lim_{x \to 0} \frac{f(x,y+dy)-f(x,y)}{dy}    Exists , is said to be partial derivative or Partial differentiational co-efficient of Z or f(x, y)with respective to y

It is denoted by δ z / δ y or δ f / δ y

<u>Implicit function</u>:-

Let z = f(x, y) where f(x, y) =0 then the implicit function is

\frac{dy}{dx} =\frac{-δ f/ δ x }{δ f/δ y }

The total differential co-efficient

d z = δ z/δ x +  \frac{dy}{dx} δ z/δ y

<u>Implicit differentiation process</u>

  • differentiate both sides of the equation with respective to 'x'
  • move all d y/dx terms to the left side, and all other terms to the right side
  • factor out d y / dx from the left side
  • Solve for d y/dx , by dividing

Example :  x^2 + x y +y^2 =1

solution:-

differentiate both sides of the equation with respective to 'x'

2x + x \frac{dy}{dx} + y (1) + 2y\frac{dy}{dx} = 0

move all d y/dx terms to the left side, and all other terms to the right side

x \frac{dy}{dx}  + 2y\frac{dy}{dx} =  - (y+2x)

Taking common d y/dx

\frac{dy}{dx} (x+2y) = -(y+2x)

\frac{dy}{dx}  = \frac{-(y+2x)}{(x+2y)}

7 0
3 years ago
Other questions:
  • In an isosceles triangle the measure of the angle formed by the two congruent sides is 80 degrees. What is the measure of each b
    10·1 answer
  • What is the remainder when the positive integer n is divided by 6 ? (1) n is a multiple of 5. (2) n is a multiple of 12.
    10·1 answer
  • What's the difference of the two polynomials? (9x²+8x)-(2x²+3x)<br>A)7x²+5x​
    11·1 answer
  • Write your answer to the following question on the whiteboard. Show all your work
    14·1 answer
  • How many thousands are in 5,000 ones
    6·2 answers
  • A scientists finds the bones of a dinosaur. What could help the scientists determine the approximate age of the dinosaur bones?
    11·1 answer
  • Students in elementary school attends school five days each week after three weeks of attendance each student has attended schoo
    13·1 answer
  • Rewrite in simplest terms (-9x-2y)+(4x-5y)
    6·2 answers
  • What is an angle that is<br> supplementary to AEB?
    9·1 answer
  • Which expression is equivalent to –3 – 3x – 1 + x 2x – 4 –2x + 4 –2x – 4? 4 – 2x
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!