Yep!
Weighing #1: Start off by splitting the pile of 12 coins evenly into two piles, 6 in each pile. Put one pile on each side of the balance. The side that is weighed down has the fake coin it in. Ignore the other 6 coins.
Weighing #2: Now you have 6 coins left. Split the pile evenly again, 3 in each pile. Repeat the same process and put each pile on one side of the balance. The side that is weighed down has your fake coin in it. Ignore the other 3 coins.
Weighing #3: You have 3 coins left. Take two coins, whichever two you like, and weigh them. If they weigh the same, then the one you didn't weigh is the fake one. If one is heavier, then that heavier one is your fake coin.
There are 2 green, 3 blue, and 4 white vases.
The green vases can be arranged in 2! = 2*1 = 2 ways.
The blue vases can be arranged in 3! = 3*21 = 6 ways.
The white vases can be arranged in 4! = 4*3*2*1 = 24 ways.
The total number of arrangements is
2*6*24 = 288
Answer: 288
Answer: The simplified form is 
Step-by-step explanation:
Since we have given that

As we know the "Exponential law":

So, it becomes

Now, at last it becomes,

Hence, the simplified form is 
Answer:
8
Step-by-step explanation:
The domain is from the points (-4,0) through (4,0).
Answer:
-3
Step-by-step explanation:
Step 1: Solve (-2+(-1))^2/3 3
1. -2+(-1) = -3
2. (-3)^2 = 9
3. 9/3 = 3
Step 2: Solve (-4)^2-17 -1
1. 3/-1
Step 3: Simplify 3/-1 = -3. I hope this helped and please don't hesitate to reach out with more questions!