<u>Answer:</u>
<em>The initial distance between the trains is 1450 m.
</em>
<u>Explanation:</u>
In the question two trains are of equal length 400 m and moves at a uniform speed of 72 km/h. train A is moving ahead of train B. If the train B has to overtake train A it should accelerate.
Train B’s acceleration is
and it accelerated for 50 seconds.
<em>
</em>
<em>t=50 s
</em>
<em>initial speed u=72km/h
</em>
<em>we have to convert this speed into m/s </em>
<em>
</em>
<em>Distance covered in accelerating phase
</em>
<em>
</em>
<em>
</em>
If a train is just behind another, the distance covered by the train located behind during overtaking phase will be equal to the sum of the lengths of the trains.
<em>Here length of train A+length of train
</em>
<em>Hence the initial distance between the trains =
</em>
Answer:
4.1666666 seconds
Explanation:
100 divided by 24 will give you about 4.1666666 seconds or 4 1/6 seconds. Hope it helps!
This is true due to the reaction that happens from water evaporating and leaving the sugar crystals behind to form.
Answer:
Option (B)
Explanation:
Light is a form of electro-magnetic waves. This light wave has distinct range of wavelength that allows it to form different colors of light. This means that the color of the light produces depending on the amount of wavelength it comprises.
The visible light ranges from Violet to Red, and this is observed as different colors when each of these electromagnetic waves strikes our eyes at a certain angle. The violet light has the shortest wavelength of about 410 nm, where the red light has the highest wavelength of about 650 nm.
Thus, the correct answer is option (B).