20.4 years is 20.4/10.2 = 2 half-life cycles, which means a quarter of the starting mass or 15.2 g will remain after this time.
If you want to change the thermos into an open energy system, you have to remove the lid. Once the lid is removed, the energy is no longer contained inside the thermos bottle. From the bottle, the energy dissipates to the environment.
I think you almost got it.
At the top, the velocity only has horizontal component, so v=12 m/s is v_x, which is v*cos(theta), because v_x is constant, so the same when it was launched or now.
With the value of the initial speed (28 m/s, which is the total speed), you can set
v_x = v * cos( theta ) ---> 12 = 28*cos(theta) --> cos(theta)=12/28=3/7
or theta = 64.62 deg, it is D. Think about it. I hope you see it.
Picture #1:
GPE = (mass) x (gravity) x (height)
GPE = (2 kg) x (9.8 m/s²) x (40 m) = 784 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (5 m/s)²
KE = (1 kg) (25 m²/s²) = 25 joules
Picture #2:
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (10 m/s)²
KE = (1 kg) (100 m²/s²) = 100 joules
Picture #3:
GPE = (mass) x (gravity) x (height)
GPE = (20 kg) x (9.8 m/s²) x (2 m) = 392 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (20 kg) (5 m/s)²
KE = (10 kg) (25 m²/s²) = 250 joules
Picture #4:
GPE = (mass) x (gravity) x (height)
98 joules = (1 kg) x (9.8 m/s²) x (height)
Height = (98 joules) / (1 kg x 9.8 m/s²)
Height = 10 meters
Picture #5:
GPE = (mass) x (gravity) x (height)
39,200 Joules = (mass) x (9.8 m/s²) x (20 m)
Mass = (39,200 joules) / (9.8 m/s² x 20 m)
Mass = 200 kg