Answer:
k(x) + g(x) = x² - 3x + 4
General Formulas and Concepts:
<u>Alg I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 3x - 7
g(x) = 2x² - 3x + 1
h(x) = 4x + 1
k(x) = -x² + 3
<u>Step 2: Find k(x) + g(x)</u>
- Substitute: k(x) + g(x) = -x² + 3 + 2x² - 3x + 1
- Combine like terms (x²): k(x) + g(x) = x² + 3 - 3x + 1
- Combine like terms (Z): k(x) + g(x) = x² - 3x + 4
4y=16
y is the variable. If you were to solve the equation you would write the equation as 4(4)=16.
The answer is 6.
36^ 1/2 = the square root of 36 = 6
Y > 2x - 3
3y - x ≤ 6
↓
y = 2x - 3
3y - x = 6
3(2x - 3) - x = 6
3(2x) - 3(3) - x = 6
6x - 9 - x = 6
6x - x - 9 = 6
5x - 9 = 6
<u> + 9 + 9</u>
<u>5x</u> = <u>15</u>
5 5
x = 3
y = 2x - 3
y = 2(3) - 3
y = 6 - 3
y = 3
(x, y) = (3, 3)
Answer:
Step-by-step explanation:
We are given the following in the question:
Volume of cake = 351 cubic inches
Let x inches be the width of cake.
Width of cake, w =

Then, length of cake,l =

Height of cake,h =

Volume of cake = Volume of cuboid

Putting values, we get:

Thus, dimensions of cake are:
