If you really keep an eye on the flow chart, the only ions you can consider as being "Definitely not present" are: Cr3+, Fe3+, and Zn2+. The rest of the ions should be considered under "Possibly present", as we cannot conclude if any of the ions are "Definitely present".
Explanation:
The given data is as follows.
Weight of solute = 75.8 g, Molecular weight of solute (toulene) = 92.13 g/mol, volume = 200 ml
- Therefore, molarity of toulene is calculated as follows.
Molarity = 
= 
= 4.11 M
Hence, molarity of toulene is 4.11 M.
- As molality is the number of moles of solute present in kg of solvent.
So, we will calculate the molality of toulene as follows.
Molality = 
= 
= 8.6 m
Hence, molality of given toulene solution is 8.6 m.
- Now, calculate the number of moles of toulene as follows.
No. of moles = 
= 
= 0.8227 mol
Now, no. of moles of benzene will be as follows.
No. of moles = 
= 
= 1.2239 mol
Hence, the mole fraction of toulene is as follows.
Mole fraction = 
= 
= 0.402
Hence, mole fraction of toulene is 0.402.
- As density of given solution is 0.857
so, we will calculate the mass of solution as follows.
Density = 
0.857
=
(As 1
= 1 g)
mass = 171.4 g
Therefore, calculate the mass percent of toulene as follows.
Mass % = 
= 
= 44.22%
Therefore, mass percent of toulene is 44.22%.
The solution changed color because the substances are not neutral.
<h3>
pH</h3>
Chemical substances have different concentrations of the hydrogen cation, called PH.
The higher the pH, the more basic the substance, and the lower the more acidic.
Bromothymol blue is a pH indicator that changes its color according to the pH of the substance, yellow for acid, blue for basic and green for neutral.
In the case of the reactions in question, we have the release of CO2 (acid) in combustion and in cellular respiration, changing the color of bromothymol blue to yellow.
Learn more about pH in: brainly.com/question/491373