Answer:
ΔH⁰(11.4g NH₄NO₃) = -30.59Kj (4 sig. figs. ~mass of NH₄NO₃(s) given) (exothermic)
Explanation:
3NH₄NO₃(s) + C₁₀H₂₂(l) + 14O₂(g) => 3N₂(g) + 17H₂O(g) + 10CO₂(g)
ΔH⁰(f): 3(-365.6)Kj 1(-301)Kj 14(0)Kj 3(0)Kj 17(-241.8)Kj 10(-393.5)Kj
= -1096.8Kj = -301Kj = 0Kj = 0Kj = -4110.6Kj = -3930.5Kj
ΔHₙ°(rxn) = ∑
(ΔH˚(f)products) - ∑(ΔH˚(f)reactants)
= [3(0)Kj + 17(-241.8)Kj + (-393.5)Kj] - [(-(1096.8)Kj + (-301)Kj + (0)Kj]
= [-(8041.1) - (-1397.8)]Kj
= -6643.3Kj (for 3 moles NH₄NO₃ used in above equation)
∴ Standard Heat of Rxn = -6643.3Kj/3moles = -214.8Kj/mole NH₄NO₃(s)
ΔH°(rxn for 14.11g NH₄NO₃(s)) = (11.4g/80.04g·mol⁻¹)(-214.8Kj/mol) = 30.5937Kj ≅ 30.59Kj (4 sig. figs. ~mass of NH₄NO₃(s) given)
Answer: HEY THERE!
Explanation: HERE IS YOUR ANSWER
Cellular respiration is what happens inside cells when they use oxygen to transfer energy from food to ATP. Cellular respiration is essential to the transfer of matter and energy through living systems
<em>HOPE THIS HELPED AND HAVE A NICE DAY!</em>
Total density of filled ball with nitrogen gas: 
The relationship between mass and volume can be easily determined using density; for example, the mass of a body is equal to its volume multiplied by the density (M = Vd), whereas the volume is equal to the mass divided by the density (V = M/d). The ball filled with nitrogen will not float in the air because total density of filled ball is greater than the density of an air. Density of the evacuated ball D = 0.214 g/L
Density of nitrogen gas = 
Mass of the nitrogen gas : 
Learn more about Mass and Density here:
brainly.com/question/10821730
#SPJ4
The reaction involved here would be written as:
2N2 + 3H2 = 2NH3
The equilibrium constant of a reaction is the ratio of the concentrations of the products and the reactants when in equilibrium. The expression for the equilibrium constant of this reaction would be as follows:
Kc = [NH3]^2 / [N2]^2[H2]^3
Kc = 0.40^2 / (0.20)^2 (0.10)^3
Kc = 4000