Answer:
(a)
Explanation:
Hello,
In this case, the temperature required to boil argon, it means, transform it from liquid to gas is -197 °C. In such a way, since the temperature inside the steel sphere is -190 °C, which is greater than the boiling point, we realize argon is gaseous, therefore, the molecules will be spread inside the sphere as they will be moving based on the kinetic theory of gases.
For that reason, answer is scheme (a).
Best regards.
When solid changes it's phase to gas without forming liquid, process is called sublimation.
H₂SO₃ is weaker acid than H₂SO₄.
The bonding power of an acid is typically influenced by the size of the "SO₄" atom; the smaller the "SO₄" atom, the stronger the H-A bond. The atoms get larger and the bonds get weaker as you proceed down a row in the Periodic Table, strengthening the acids.
<h3>Describe acid.</h3>
The term "acid" refers to any molecule or ion that can donate a proton (a Brnsted-Lowry acid) or establish a covalent bond with an electron pair (a Lewis acid). The first class of acids is the proton donors, also known as Brnsted-Lowry acids.
Its chemical name is lysergic acid diethylamide, or LSD as it is more often known. Because it has a potent hallucinogenic impact, using it could alter how you see the world and its objects. The effects of LSD are referred to as tripping.
The term "acid" is frequently used to denote aqueous solutions of acids with a pH lower than 8, even though the technical meaning of the term only pertains to the solute.
To learn more about acid visit:
brainly.com/question/14072179
#SPJ4
A Bronsted-Lowry acid is a chemical species that donates one or more hydrogen ions in a reaction. In contrast, a Bronsted-Lowry base accepts hydrogen ions. When it donates its proton, the acid becomes its conjugate base. A more general look at the theory is as an acid as a proton donor and a base as a proton acceptor. :)
In order from the most likely to bind an oxygen to least likely;
3 bound o2, po2=100mmhg1 bound o2, po2=100mmhg3 bound o2, po2=40mmhg<span>1 bound o2, po2=40mmhg
</span>
Haemoglobin is more likely to bind oxygen if its other oxygen binding sites have already bound to an oxygen molecule. The higher the partial pressure of oxygen in the blood also makes it more likely that the hemoglobin will bind oxygen.
<span />