Answer:
Explanation:
Given that:
the temperature
= 250 °C= ( 250+ 273.15 ) K = 523.15 K
Pressure = 1800 kPa
a)
The truncated viral equation is expressed as:

where; B = -
C = -5800 
R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹
Plugging all our values; we have


Multiplying through with V² ; we have


V = 2250.06 cm³ mol⁻¹
Z = 
Z = 
Z = 0.931
b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].
The generalized Pitzer correlation is :












The compressibility is calculated as:


Z = 0.9386


V = 2268.01 cm³ mol⁻¹
c) From the steam tables (App. E).
At 
V = 0.1249 m³/ kg
M (molecular weight) = 18.015 gm/mol
V = 0.1249 × 10³ × 18.015
V = 2250.07 cm³/mol⁻¹
R = 729.77 J/kg.K
Z = 
Z = 
Z = 0.588
Answer:
4KNO3 ==> 2K2O + 2N2 + 5O2
Explanation:
It's a decomposition, but not a simple one.
KNO3 ==> K2O + N2 + O2 I don't usually do this, but I think the easiest way to proceed is to balancing the K and N together. That will require a 2 in front of KNO3
4KNO3 ==> 2K2O + 2N2 + 5O2
Now you have (3*4) = 12 oxygens. Two are on the K2O. So the other 10 must be on the O2
That should do it.
Answer:
3.0 moles Al₂O₃
Explanation:
We do not know which of the reactants is the limiting reactant. Therefore, you need to convert both of the given mole values into the product. This can be done using the mole-to-mole ratio made up of the balanced equation coefficients.
4 Al + 3 O₂ -----> 2 Al₂O₃
6.0 moles Al 2 moles Al₂O₃
---------------------- x ------------------------- = 3.0 moles Al₂O₃
4 moles Al
4.0 moles O₂ 2 moles Al₂O₃
---------------------- x ------------------------- = 2.7 moles Al₂O₃
3 moles O₂
As you can see, O₂ produces the smaller amount of product. This means O₂ is the limiting reactant. Remember, the limiting reactant is the reactant which runs out before the other reactant(s) are completely reacted. As such, the actual amount of Al₂O₃ produced is 2.7 moles.
However, since this problem is directly addressing how much Al₂O₃ is produced from Al, the answer you most likely are looking for is 3.0 moles Al₂O₃.
The total mass would be 142.05 g/mol. Since sodium is 22.99 g/mol and there are 2 sodium atoms, it would be 45.98 g/mol. Divide 45.98 by 142.05 and you get 32.37%