Answer:
The answer is both molecule and an element
Hydrogen is the chemical element with the symbol H and atomic number 1. ... At standard conditions hydrogen is a gas of diatomic molecules having the formula H2. It is colorless, odorless, non-toxic, and highly combustible.
Explanation:
Answer:
54.99% yield
Explanation:
percent yield is just the amount you obtained over the amount expected times 100%.
(experimental value/theoretical value) x 100%
= (107.9 g/196.2 g) x 100%
=54.99% yield
Answer:
See explanation
Explanation:
The reason why the droplets are spherical is the surface area to volume ratio of the falling droplet in a gravitational field. Recall that a sphere has a small surface area to volume ratio.
Between X and Y, one key difference that will define the rate at which the two drops of liquid falls is the viscosity of the fluid. Since the images were not attached, I can not really tell what liquid droplet is more flatter than the other.
However, the liquid with a greater surface tension will form larger droplets and experience a greater air resistance as the droplet falls. Hence the less the surface tension, the flatter the droplets. Cohesive forces pull molecules of a liquid droplets inwards leading to a more spherical shape and reducing the surface area. Surface tension is therefore the reason why liquids form droplets.
Answer:
2.79 °C/m
Explanation:
When a nonvolatile solute is dissolved in a pure solvent, the boiling point of the solvent increases. This property is called ebullioscopy. The temperature change (ΔT) can be calculated by:
ΔT = Kb*W*i
Where Kb is the ebullioscopy constant for the solvent, W is the molality and i is the van't Hoff factor.
W = m1/(M1*m2)
Where m1 is the mass of the solute (in g), M1 is the molar mass of the solute, and m2 is the mass of the solvent (in kg).
The van't Hoff factor represents the dissociation of the elements. For an organic molecule, we can approximate i = 1. Thus:
m1 = 2.00 g
M1 = 147 g/mol
m2 = 0.0225 kg
W = 2/(147*0.0225)
W = 0.6047 mol/kg
(82.39 - 80.70) = Kb*0.6047*1
0.6047Kb = 1.69
Kb = 2.79 °C/m