The rate constant of the reaction K we can get it from this formula:
K=㏑2/ t1/2 and when we have this given (missing in question):
that we have one jar is labeled t = 0 S and has 16 yellow spheres inside and the jar beside it labeled t= 10 and has 8 yellow spheres and 8 blue spheres and the yellow spheres represent the reactants A and the blue represent the products B
So when after 10 s and we were having 16 yellow spheres as reactants and becomes 8 yellow and 8 blue spheres as products so it decays to the half amount so we can consider T1/2 = 10 s
a) by substitution in K formula:
∴ K = ㏑2 / 10 = 0.069
The amount of A (the reactants) after N half lives = Ao / 2^n
b) so no.of yellow spheres after 20 s (2 half-lives) = 16/2^2 = 4
and the blue spheres = Ao - no.of yellow spheres left = 16 - 4 = 12
c) The no.of yellow spheres after 30 s (3 half-lives) = 16/2^3 = 2
and the blue spheres = 16 - 2 = 14
The law of definite proportions would state that a hydrate always contain exactly the same proportion of salt and water by mass.
strictly speaking, the law of definite proportion states that a compound always
contains exactly the same proportion of elements by mass.
But the law is often applied to groupings of elements in compound.
Hydrates are salt that have a certain amount of water asa part of their structure.
The water is chemically combined with the compound in a definite ratio.
MgCl2(s) + H2O(l) → MgO(s) + 2 HCl(g)
Using the standard enthalpies of formation given in the source below:
(−601.24 kJ) + (2 x −92.30 kJ) − (−641.8 kJ) − (−285.8 kJ) = +141.76 kJ
So:
MgCl2(s) + H2O(l) → MgO(s) + 2 HCl(g), ΔH = +141.76 kJ
The answer is False ... Anyone can benefit form <span>scientific knowledge. Thank about your Health</span>