C
I have had this question on a test before!! Hope this helps
430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
<h3>What is Molarity?</h3>
- The amount of a substance in a specific volume of solution is known as its molarity (M).
- The number of moles of a solute per liter of a solution is known as molarity.
<h3>Calculation of Required amount of AgCl</h3>
Remember that mol/L is the unit of molarity (M).
We can compute the necessary number of moles of solute by multiplying the concentration by the liters of solution, according to dimensional analysis.
0.75L×4.0M=3.0mol
Then, using the periodic table's molar mass for AgCl, convert from moles to grams:
3.0mol×143.321gmol=429.963g
The final step is to round to the correct significant figure, which in this case is two: 430g.
Hence, 430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
Learn more about Molarity here:
brainly.com/question/8732513
#SPJ4
I Would Think that the answer is 55.845 u ± 0.002 u
Or you could just do<u> 55.85 Grams</u>
Answer:
Explanation:
Physical changes in cooking include the melting of solids, such as butter, and the boiling of liquids, such as water. Examples of physical changes would be the melting of fats and the boiling of water. Chemical changes involve the production of new substances.
Answer:
a) 24.7 mol
b) 790 g
Explanation:
Step 1: Given data
- Volume of the chamber (V): 200. L
- Room temperature (T): 23 °C
- Pressure of the gas (P): 3.00 atm
Step 2: Convert "T" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 23°C + 273.15 = 296 K
Step 3: Calculate the moles (n) of oxygen
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 3.00 atm × 200. L/(0.0821 atm.L/mol.K) × 296 K = 24.7 mol
Step 4: Calculate the mass (m) corresponding to 24.7 moles of oxygen
The molar mass (M) of oxygen ga sis 32.00 g/mol. We will calculate the mass of oxygen using the following expression.
m = n × M
m = 24.7 mol × 32.00 g/mol = 790 g