Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>
Answer:
Like you, like you
Like you, ooh
I found it hard to find someone like you
Like you, like you
Send your location, come through
I can't sleep no more
In my head, we belong
And I can't be without you
Why can't I find no one like you?
I can't sleep no more
In my head, we belong
And I can't be without you
Why can't I find no one like you?
Explanation:
Answer is: silicon isotope with mass number 28 has highest relative abundance, this isotope is the most common of these three isotopes.
Ar₁(Si) = 28; the average atomic mass of isotope ²⁸Si.
Ar₂(Si) =29; the average atomic mass of isotope ²⁹Si.
Ar₃(Si) =30; the average atomic mass of isotope ³⁰Si.
Silicon (Si) is composed of three stable isotopes, ₂₈Si (92.23%), ₂₉Si (4.67%) and ₃₀Si (3.10%).
ω₁(Si) = 92.23%; mass percentage of isotope ²⁸Si.
ω₂(Si) = 4.67%; mass percentage of isotope ²⁹Si.
ω₃(Si) = 3.10%; mass percentage of isotope ³⁰Si.
Ar(Si) = 28.086 amu; average atomic mass of silicon.
Ar(Si) = Ar₁(Si) · ω₁(B) + Ar₂(Si) · ω₂(Si) + Ar₃(Si) · ω₃(Si).
28,086 = 28 · 0.9223 + 29 · 0.0467 + 30 · 0.031.
The difference between a mixture and a compound is that a mixture can be easily separated like a salad where you can pick things out and a compounds you are usually not able to undo