The best ticket deal are illustrations of linear equations
The ticket system is a better deal to the max ticket
<h3>How to determine the best ticket deal</h3>
From the complete question, we have the following summary:
Charges = $22 per person
Surcharge = $10 per transaction
Charges = $20 per person
Surcharge = $16 per transaction
Assume there would be only one transaction, the linear equations that represent the ticket deals are:
Ticket System: y = 22x + 10
Max Ticket: y = 20x + 16
The costs of ticket for two people in both deals are:
Ticket System: y = 22*2 + 10 = 54
Max Ticket: y = 20*2 + 16 = 56
By comparison;
54 is less than 56
This means that the ticket system is a better deal to the max ticket
Read more about linear equations at:
brainly.com/question/14323743
Answer:
slope = -3
Step-by-step explanation:
1) Rearrange eqn into slope intercept form
slope intercept form: y = mx + b
where...
m = the slope
b = the y-intercept (where the line crosses the y axis)
3x + y = 12
y = -3x+12
2) Know parallel rule. A line that runs parallel has the same slope but a different y-intercept
So the slope is: -3
We have been given that an artist cuts the bottom 4 inches from an empty sphere with a radius of 12 inches to make a bowl. We are asked to find the length of the rim of the bowl.
The rim of the bowl will be equal to the perimeter of circle with radius of 12 inches.
, where r represents radius of circle.




Therefore, the rim of the bowl is approximately 75.4 inches.
Answer47.3%
Step-by-step explanation:
Answer:
x° = 11°
<em>Z </em><em>FGI </em><em>=</em><em> </em><em> </em><em>6</em><em>0</em><em>°</em>
Step-by-step explanation:
<em>I</em><em>f</em><em> </em><em>GH</em><em> </em><em>bisects</em><em> </em><em>Z </em><em>FGI</em>
<em>then</em><em> </em><em>Z </em><em>FGH </em><em>=</em><em> </em><em>Z </em><em>H</em><em>GI</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>or,</em><em> </em><em>(</em><em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>3</em><em>)</em><em>°</em><em> </em><em>=</em><em> </em><em>(</em><em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>1</em><em>4</em><em>)</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>or,</em><em> </em><em>3</em><em>x</em><em>°</em><em> </em><em>-</em><em> </em><em> </em><em>4</em><em>x</em><em>°</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em><em>4</em><em>°</em><em> </em><em>+</em><em> </em><em>3</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>or,</em><em> </em><em>x°</em><em> </em><em>=</em><em> </em><em>1</em><em>1</em><em>°</em>
<em>Z </em><em>FGI </em><em>=</em><em> </em><em>3</em><em>3</em><em>°</em><em> </em><em>-</em><em> </em><em>3</em><em>°</em><em> </em><em>+</em><em> </em><em>4</em><em>4</em><em>°</em><em> </em><em>-</em><em> </em><em>1</em><em>4</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em> </em><em>6</em><em>0</em><em>°</em>