First, find the expected number of scooters rented per month:
As the data is symmetrical, E(X) (the expected value) is the middle value. So, on average, 2.5 scooters should be taken per month.
His total costs were 5 * 3000 = $15,000
So, to break even, he needs to make $15,000.
He will be selling for 5 years, or 60 months.
As a result, he needs to make 15000/60 = $250/month
As he is selling 2.5 scooters on average, he needs to rent each for:
$250/2.5 = <u>$100/month</u>
There’s no image attached, ask the question again
Line A: 2x+2y=8 ⇒2y=-2x+8 ⇒ y=-x+4
Line B: x+y=3 ⇒y=-x+3
Therefore: y=y then:
-x+4=-x+3
-x+x=3-4
0≠-1 ⇒There is no solution because the lines are parallels
Answer: There is no solution
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so

Im pretty sure its B and D. not 100% tho