Which part needs answering ?
Answer:
Below!
Step-by-step explanation:
Using Pythagoras theorem, I will solve all of the problems.
<h3>________________________________________________</h3>
<u>Question 9:</u>
- 10² = 6² + x²
- => 100 = 36 + x²
- => 100 - 36 = x²
- => 64 = x²
- => x = 8
<h3>________________________________________________</h3>
<u>Question 10:</u>
- 26² = 24² + x²
- => 676 = 576 + x²
- => 676 - 576 = x²
- => 100 = x²
- => x = 10
<h3>________________________________________________</h3>
<u>Question 11:</u>
- 15² = 12² + x²
- => 225 = 144 + x²
- => 225 - 144 = x²
- => 81 = x²
- => x = 9
<h3>________________________________________________</h3>
<u>Question 12:</u>
- x² = 8² + 12²
- => x² = 64 + 144
- => x² = 208
- => x = √208
- => x = 14.2 (Rounded)
<h3>________________________________________________</h3>
<u>Question 13:</u>
- 7² = 2² + x²
- => 49 = 4 + x²
- => 49 - 4 = x²
- => 45 = x²
- => x = √45
- => x = 6.7 (Rounded)
<h3>________________________________________________</h3>
<u>Question 14</u>
First, let's solve for the variable x using Pythagoras theorem.
- => 5² = 3² + x²
- => 25 = 9 + x²
- => 16 = x²
- => x = 4 units
Now, let's solve for the variable y using Pythagoras theorem.
- (3 + 6)² = 5² + y²
- => (9)² = 25 + y²
- => 81 = 25 + y²
- => y² = 56
- => y = √56
- => y = 7.5 (Rounded) units
Answers (Nearest tenth):
<h3>________________________________________________</h3>
<u>Question 15:</u>
First, let's find the value of the variable y using Pythagoras theorem.
- 8² = 6² + y²
- => 64 = 36 + y²
- => 28 = y²
- => y = √28
- => y = 5.3 (Rounded) units
Now, let's find the value of the variable x using multiplication.
- x = 2y
- => x = 2(5.3)
- => x = 10.6 units
Answer (Nearest tenth)
- x = 10.6 units
- y = 5.3 units
<h3>________________________________________________</h3>
Answer:
x = 15.7945
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Trigonometry</u>
- [Right Triangles Only] SOHCAHTOA
- [Right Triangles Only] sinθ = opposite over hypotenuse
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify variables</em>
Angle θ = 33°
Opposite Leg = <em>x</em>
Hypotenuse = 29
<u>Step 2: Find Angle</u>
- Substitute in variables [sine]: sin33° = x/29
- [Multiplication Property of Equality] Multiply 29 on both sides: 29sin33° = x
- Rewrite: x = 29sin33°
- Evaluate: x = 15.7945