Explanation:
The best way to separate the mixture is by using a bar magnet. We explore the magnetic property of the iron fillings in the mixture to separate it out.
- The mixture is spread out thinly on a flat surface.
- A bar magnet is hovered above the spread of the mixture
- The magnet attracts the iron fillings to itself
- This will leave the salt behind in the mixture.
Answer:
1.35 × 10⁴ kg/m³ at 22 °C; 1.34 × 10⁴ kg/m³ at 100 °C
Explanation:
The cubic expansivity (γ) of a liquid is the fractional change in volume per unit change in temperature.
Multiply by V₀ΔT and transpose
ΔV = γV₀ΔT
and
V = V₀ + ΔV
===============
<em>At 0 °C
</em>
Assume you have 1 m³ of Hg
ρ = m/V Multiply by V and transpose
m = ρV
ρ = 1.36 × 10⁴ kg/m³
m = 1.36 × 10⁴ × 1 = 1.36 × 10⁴ kg
===============
<em>At 22 °C
</em>
Assume that you have 1 m³ of Hg
γ = 180 × 10⁻⁶ K⁻¹
ΔT = 22 °C – 0 °C = 22 °C
ΔV = 180 × 10⁻⁶ × 22
ΔV = 3.96 × 10⁻³ m³ Calculate volume
V = 1 + 0.00396
V = 1.00396 m³ Calculate density
ρ = 1.36 × 10⁴/1.00396
ρ = 1.35 × 10⁴ kg/m³
===============
<em>At 100 °C
</em>
ΔT = 100 °C – 0 °C = 100 °C
ΔV = 180 × 10⁻⁶ × 100
ΔV = 0.0180 m³ Calculate volume
V = 1 + 0.0180
V = 1.0180 m³ Calculate density
ρ = 1.36 × 10⁴/1.0180
ρ = 1.34 × 10⁴ kg/m³
Answer:
D
Explanation:
It could come from anybody of water around you that had some water evaporated.
Explanation:
Carbon dioxide dissolves in water and slowly reacts with water to produce carbonic acid. The cloudy white solution observed when CO2 is bubbled into limewater results from a reaction between Ca(OH)2 and either CO2 or H2CO3 to form an insoluble calcium carbonate precipitate.
Exposure to small amounts of lead<span> over a long period of time is called chronic toxicity. </span>Lead<span> is particularly </span>dangerous<span> because once it gets into a person's system, it is distributed throughout the body just like helpful minerals such as iron, calcium, and zinc. And </span>lead<span> can cause harm wherever it lands in the body.</span>