Specific heat capacity is the amount of energy required to raise one gram of substances by 1 degree celsius . Therefore specific heat capacity for tatanium is 89.7j /( 33.0g x5.2 degree celsius) = 0.52j/g degree celcius
Molar mass for tatanium is 47.9 g/mole
heat is therefore 47.9 g/mole x 0.52j/g =24.9j/mole
Answer: I & III
Explanation: Solutes are the substances which are minimum in quantity and which is required to dissolve in the solvent (which is larger in quantity) in order to make a solution.
In the asked question, it is given that the water is the solvent and from the given solutes we have to pick which would make an aqueous solution with the highest concentration of solute possible.
Thus the most appropriate answers could be the Ammonia and hexanol which can make the highest possible concentration of solute as ammonia is the gas which is highly soluble in water and hexanol is an alcohol which has an affinity for water. Thus the correct option is I & III
Answer:
Cardiovascular system
also known as the The circulatory system,
Explanation:
please mark branliest if this helped and rate
CuCl2+F2—>CuF2+Cl2.
This is a single replacement because there is one compound and one element. Picture Cu as ‘A’ Cl2 as ‘B’ and F2 as ‘C.’ So AB+C—>AC+B. A and B “broke up” and that resulted to A going with C to create the compound CuF2 leaving Cl2 alone.
According to the question, the determined melting point of the compound is 112.5-113.0oC. When the solidified compound was retried, the melting point was found to be 133.6-154.5oC. This greater range higher than 112°C is caused by reusing samples leads to errors.
A pure sample is known by its sharp melting point. A pure sample does not melt over a large range. We can see this in the predetermined melting points of the pure sample(112.5-113.0oC).
However, reusing a sample introduces errors because the pure sample may become contaminated leading to a larger and higher range of melting point (133.6-154.5oC) which is far above 112°C.
Learn more: brainly.com/question/5325004