Primary Consumers
Herbivores
Trophic level II Members
144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4
The statement that is not true about the exothermic reaction is that the potential energy of the product is higher than the potential energy of the reactant. That is option D.
<h3>What is an exothermic reaction?</h3>
An exothermic reaction is the reaction that releases heat to the environment which causes increase in the immediate environment.
The characteristics of exothermic reaction include the following:
- Activation energy of the forward reaction is smaller than the activation energy of the reverse reaction.
- Heat is released to the environment during reaction.
Since there is release of heat, the product will have a lower energy than the reactant.
Therefore, the statement that is not true about the exothermic reaction is that the potential energy of the product is higher than the potential energy of the reactant.
Learn more about exothermic reaction here:
brainly.com/question/2924714
#SPJ1
Magnesium :
<span>[Ne] 3s²</span>
Answer A
hope this helps!
we have a total of three times the original number (6.923 * 10**-7) moles of all ions, or 2.077 * 10**-6 moles of ions
<h3>What is aragonite-strontianite solid solution dissolution in nonstoichiometric Sr (HCO3)2 solutions?</h3>
Synthetic strontianite-aragonite solid-solution minerals were dissolved in non-stoichiometric CO2-saturated Sr(HCO3)2 and Ca(HCO3)2 solutions at 25°C. The reactions in Sr(HCO3)2 solutions frequently become incongruent, precipitating a Sr-rich phase before attaining stoichiometric saturation. Mechanical mixes of solids approach stoichiometric saturation in terms of the least stable solid in the combination.
This surficial phase has a thickness of 0-10 atomic layers in Sr(HCO3)2 solutions and a thickness of 0-4 layers in Ca(HCO3)2 solutions and dissolves and/or recrystallizes within 6 minutes of reaction.
learn more about Sr (HCO3)2 refer
brainly.com/question/24667072
#SPJ4