Answer:
D 20 *1.10 * 1.05
Step-by-step explanation:
We have 19.8 tons of wheat. That is close to 20 tons
We increase by 9.8 percent. 9.8% is close to 10%
When we increase, that is 100% of what we had plus the increase, so we multiply by 100 +10% or 110%. In decimal form that is 1.1
20 *1.10
Then the next year we increase by 5.1%. That is close to 5%
We have 100% plus the 5% or 105%, which in decimal form is 1.05
We multiply what we had (20 *1.10) by 1.05
20 *1.10 * 1.05
This is the total amount we have
Surface area of box=1200 cm²
<span>Volume of box=s²h </span>
<span>s = side of square base </span>
<span>h = height of box </span>
<span>S.A. = s² + 4sh </span>
<span>S.A. = surface area or 1200 cm², s²
= the square base, and 4sh = the four 'walls' of the box. </span>
<span>1200 = s² + 4sh </span>
<span>1200 - s² = 4sh </span>
<span>(1200 - s²)/(4s) = h </span>
<span>v(s) = s²((1200 - s²)/(4s)) </span>
<span>v(s) = s(1200 - s²)/4 . </span>
<span>v(s) = 300s - (1/4)s^3</span>
by derivating
<span>v'(s) = 300 - (3/4)s² </span>
<span>0 = 300 - (3/4)s² </span>
<span>-300 = (-3/4)s² </span>
<span>400 = s² </span>
<span>s = -20 and 20. </span>
again derivating
<span>v"(s) = -(3/2)s </span>
<span>v"(-20) = -(3/2)(-20) </span>
<span>v"(-20) = 30 </span>
<span>v"(20) = -(3/2)(20) </span>
<span>v"(20) = -30 </span>
<span>v(s) = 300s - (1/4)s^3 </span>
<span>v(s) = 300(20) - (1/4)(20)^3 </span>
<span>v(s) = 6000 - (1/4)(8000) </span>
<span>v = 6000 - 2000
v=4000</span>
2(n-2)=9
That's the answer. U just set it up as it is written
the frequency of the sinusoidal graph is 2 in 2 π interval
Step-by-step explanation:
The frequency of the graphs refers to the number of the cycles, the graph completes in a given fixed interval.
We already know the formula that
P= (1/ F)
Thus, F= (1/ P)
Where F= frequency and P= Period
Period is the horizontal length (x- axis component) of one complete cycle.
Thus, Observing the above graph
We find that the graph completes 1 cycle in π interval and 2 cycles in 2π interval
Thus, the frequency of the sinusoidal graph is 2 in 2 π interval