Answer:
i hope this helps
Step-by-step explanation:
To determine the length of time it would took for the biker to cool down, we need the rate that would relate the distance he traveled to cool down per units of time. For this problem, the rate is given as 0.25 miles per minute. So, we simply divide the total distance he traveled with this rate. We calculate as follows:
time to cool down = distance / rate
time to cool down = 35 miles / 0.25 miles / minute
time to cool down = 140 minutes or 2 hrs and 20 minutes
Therefore, the biker would need to cool down for about 2 hrs and 20 minutes if he traveled for 35 miles.
Given that the number of years should be represented with x, the number of fish in the pond after x years should best be represented with f(x). The equation that would best show the given scenario in the problem above is,
f(x) = 500(2^x)
From the given, 500 is used as the initial population of the fish.
Answer:
1) 
2) 
3) 
And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
4) 
And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
Step-by-step explanation:
For this case we have the following distributions given:
Probability M J
0.3 14% 22%
0.4 10% 4%
0.3 19% 12%
Part 1
The expected value is given by this formula:

And replacing we got:

Part 2

Part 3
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
Part 4
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be: