Answer:
x=2.5 or x=-4
Step-by-step explanation:
factorisation= factors:1, 2, 4, 5, 10, 20 (only the positive factors)
We will use the factors 4 and 5.
=(2x-5)(x+4)=0
2x-5=0 || x+4=0
2x=+5 || x=-4
x=2.5 or x=-4
I think is 4000 because when it's sad 1 singnificant figure you have to round the first name which 4
<h3>#End behaviour:-</h3>
#1
#2
<h3>#Degree:-</h3>
Find nodes
#1
#2
It's a parabola so it's the graph of a quadratic equation.
<h3>Real zeros</h3>
#1
#2
Answer:
a
![P(X \ge 1) = 0.509](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%200.509%20)
b
![P(X \ge 1) = 0.6807](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D%200.6807%20)
Step-by-step explanation:
From the question we are told that
The number of students in the class is N = 20 (This is the population )
The number of student that will cheat is k = 3
The number of students that he is focused on is n = 4
Generally the probability distribution that defines this question is the Hyper geometrically distributed because four students are focused on without replacing them in the class (i.e in the generally population) and population contains exactly three student that will cheat.
Generally probability mass function is mathematically represented as
![P(X = x) = \frac{^{k}C_x * ^{N-k}C_{n-x}}{^{N}C_n}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%20%5Cfrac%7B%5E%7Bk%7DC_x%20%2A%20%5E%7BN-k%7DC_%7Bn-x%7D%7D%7B%5E%7BN%7DC_n%7D)
Here C stands for combination , hence we will be making use of the combination functionality in our calculators
Generally the that he finds at least one of the students cheating when he focus his attention on four randomly chosen students during the exam is mathematically represented as
![P(X \ge 1) = 1 - P(X \le 0)](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%20P%28X%20%5Cle%200%29)
Here
![P(X \le 0) = \frac{ ^{3} C_0 * ^{20 - 3} C_{4- 0}}{ ^{20}C_4}](https://tex.z-dn.net/?f=P%28X%20%5Cle%200%29%20%3D%20%20%5Cfrac%7B%20%5E%7B3%7D%20C_0%20%2A%20%20%5E%7B20%20-%203%7D%20C_%7B4-%200%7D%7D%7B%20%5E%7B20%7DC_4%7D)
![P(X \le 0) = \frac{ ^{3} C_0 * ^{17} C_{4}}{ ^{20}C_4}](https://tex.z-dn.net/?f=P%28X%20%5Cle%200%29%20%3D%20%20%5Cfrac%7B%20%5E%7B3%7D%20C_0%20%2A%20%20%5E%7B17%7D%20C_%7B4%7D%7D%7B%20%5E%7B20%7DC_4%7D)
![P(X \le 0) = \frac{ 1 * 2380}{ 4845}](https://tex.z-dn.net/?f=P%28X%20%5Cle%200%29%20%3D%20%20%5Cfrac%7B%201%20%2A%20%202380%7D%7B%204845%7D)
![P(X \le 0) = 0.491](https://tex.z-dn.net/?f=P%28X%20%5Cle%200%29%20%3D%20%200.491)
Hence
![P(X \ge 1) = 1 - 0.491](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%200.491)
![P(X \ge 1) = 0.509](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%200.509%20)
Generally the that he finds at least one of the students cheating when he focus his attention on six randomly chosen students during the exam is mathematically represented as
![P(X \ge 1) = 1 - P(X \le 0)](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%20P%28X%20%5Cle%200%29)
![P(X \ge 1) =1- [ \frac{^{k}C_x * ^{N-k}C_{n-x}}{^{N}C_n}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7Bk%7DC_x%20%2A%20%5E%7BN-k%7DC_%7Bn-x%7D%7D%7B%5E%7BN%7DC_n%7D%5D%20)
Here n = 6
So
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{20 -3}C_{6-0}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B20%20-3%7DC_%7B6-0%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{17}C_{6}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B17%7DC_%7B6%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{1 * 12376}{38760}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B1%20%20%2A%20%2012376%7D%7B38760%7D%5D%20)
![P(X \ge 1) =1- 0.3193](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%200.3193%20)
![P(X \ge 1) = 0.6807](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D%200.6807%20)
Step-by-step explanation:
each child gets a certain amount of items costing the specified price by item.
so, we need to multiply the number of children with the number of items with the price per item to get the total cost.
500×3×3.5 for pencils = 5,250
500×5×7.5 for notebooks = 18,750
500×1×21.75 for crayons = 10,875
500×2×9.26 for pad paper = 9,260
total 44,135
since we have only 1,200 available in the existing fund, we need a new one to cover the remaining
44,135 - 1,200 = 42,935