Answer:
ttfyggayxdy used to usual faith using
Explanation:
ttdrft
Answer:
Galileo performed a famous experiment where he used a ball rolling on a ramp (inclined plane) to study the motion of objects under the influence of gravity. The ramp allowed him to make more precise measurements because the ball moved more slowly along the ramp than if it were simply dropped. Galileo discovered through this experiment that the objects fell with the same acceleration, proving his prediction true, while at the same time disproving Aristotle's theory of gravity (which states that objects fall at speed proportional to their mass). Galileo's conclusion from this thought experiment was that no force is needed to keep an object moving with constant velocity. Newton took this as his first law of motion. One result of the experiment surprised Galileo, and one surprises us. Galileo found that the heavy ball hit the ground first, but only by a little bit. Except for a small difference caused by air resistance, both balls reached nearly the same speed. And that surprised him. According to history, Galileo’s experiment on falling bodies largely contributed to Isaac Newton’s Law of Gravity. In Galileo’s experiment, he is said to have dropped balls from the Leaning Tower of Pisa. The balls were made of the same material but had different masses. Galileo set out to prove that the time it took for these objects to reach the ground would be the same. Galileo proved that objects reached the ground at the same time,
Explanation:
I think this is right & I hope this helped
Answer: Option (d) is the correct answer.
Explanation:
An electrolytic solution which is conductive in nature, that is, a solution that has ions or atoms.
In the given options, sports drink, sweat, and ocean water are all electrolytic solution.
Whereas pure water has pH equals to 7, that is, pure water is neutral. Thus, we can conclude that pure water is not an example of an electrolytic solution.
Answer:
138.6 g of C₂HF₃O₂ have 38.9 g of O
Explanation:
Trifluoroacetic acid → C₂HF₃O₂
Molar mass = Mass of C . 2 + Mass of H + Mass of F . 3 + Mass of O .2
Molar mass = 12 . 2 + 1 . 1 + 19 . 3 + 16 . 2 = 114 g /mol
1 mol of C₂HF₃O₂ has:
2 moles of C
1 mol of H
3 moles of F
2 moles of O
If we state the relation in mass by g we say:
114 g of C₂HF₃O₂ have 24g of C, 1 g of H, 57 g of F and 32 g of O
Let's make a rule of three:
32 g of O are contained in 114 g of C₂HF₃O₂
38.9 g of O may be contained in (38.9 . 114) / 32 = 138.6 g