Step one calculate the moles of each element
that is moles= % composition/molar mass
molar mass of Ca = 40g/mol, S= 32 g/mol , O= 16 g/mol
moles of Ca = 29.4 /40g/mol=0.735 moles, S= 23.5/32 =0.734 moles, O= 47.1/16= 2.94 moles
calculate the mole ratio by dividing each mole with smallest mole that is 0.734
Ca= 0.735/0.734= 1, S= 0.734/0.734 =1, O = 2.94/ 0.734= 4
therefore the emipical formula = CaSO4
Idk look it up on another website
Answer:
K^+ and NO3^-
Explanation:
In a balanced ionic equation, we usually see the species that react to yield the main product in the reaction.
Consider the reaction;
Pb(NO3)2(aq) +2 KI(aq) -------> PbI2(s) + 2KNO3(aq)
The main product in this reaction is PbI2. Hence the balanced ionic equation is;
Pb^2+(aq) + 2I^-(aq) ------> PbI2(s)
Notice that K^+ and NO3^- did not participate in this reaction. All ions that are part of the molecular equation but do not participate in the ionic reaction equation are called spectator ions. Hence K^+ and NO3^- are spectator ions in this reaction as can be seen clearly above.
Neil Bohr contributed towards science in many ways, but his contributions did not include the charge of an electron. Neil Bohr recognized a relationship between the chemical properties of a substance and the number of valence shell electrons. Moreover, he introduced the atomic model in 1913 and provided the liquid-drop model to explain nuclear fusion.
Answer:
D. all of these are chemical changes