SOH CAH TOA
Sine is opposite over hypotenuse so you're answer is C.
:)))
Answer:
see the attachment
Step-by-step explanation:
We assume that the question is interested in the probability that a randomly chosen class is a Friday class with a lab experiment (2/15). That is somewhat different from the probability that a lab experiment is conducted on a Friday (2/3).
Based on our assumption, we want to create a simulation that includes a 1/5 chance of the day being a Friday, along with a 2/3 chance that the class has a lab experiment on whatever day it is.
That simulation can consist of choosing 1 of 5 differently-colored marbles, and rolling a 6-sided die with 2/3 of the numbers being designated as representing a lab-experiment day. (The marble must be replaced and the marbles stirred for the next trial.) For our purpose, we can designate the yellow marble as "Friday", and numbers greater than 2 as "lab-experiment".
The simulation of 70 different choices of a random class is shown in the attachment.
_____
<em>Comment on the question</em>
IMO, the use of <em>70 trials</em> is coincidentally the same number as the first <em>70 days</em> of school. The calendar is deterministic, so there will be exactly 14 Fridays in that period. If, in 70 draws, you get 16 yellow marbles, you cannot say, "the probability of a Friday is 16/70." You need to be very careful to properly state the question you're trying to answer.
Given a trapezoid WXYZ. In a trapezoid one pair of opposite sides are parallel .Parallel lines have same slope.Slope of line parallel to x axis is 0.If the line starts at the bottom left and goes towards the top right it has negative slope.
All that is true for Trapezoid WXYZ are:
Line WZ has the same slope as line XY.
Line XW has a lesser slope than line YZ.
Line ZW has the same y-intercept as line WZ.
Line XY has a greater y-intercept
Answer:
7x=11
Step-by-step explanation:
do it
Answer: 1,365 possible special pizzas
Step-by-step explanation:
For the first topping, there are 15 possibilities, for the second topping, there are 14 possibilities, for the third topping, there are 13 possibilities, and for the fourth topping, there are 12 possibilities. This is how you find the number of possible ways.
15 * 14 * 13 * 12 = 32,760
Now, you need to divide that by the number of toppings you are allowed to add each time you add a topping.
4 * 3 * 2 * 1 = 24
32,760 / 24 = 1,365
There are 1,365 possible special pizzas