the common difference is two of course
Answer: I hope this answer your question
Step-by-step explanation: Have a brilliant day mate- Lily ^_^
<span>∫(sinx cosx)^2dx = ∫(1/2sin 2x)^2 dx = 1/4∫sin^2 2x dx = 1/4∫1/2(1 - cos 4x)dx = 1/8∫(1 - cos 4x) dx = 1/8[x - sin 4x / 4] + c = 1/32(4x - sin 4x) + c
</span>
The one on the left is 6 (1/2x3x4) and the one on the right is 72 (6x12)
As you progress in math, it will become increasingly important that you know how to express exponentiation properly.
y = 2x3 – x2 – 4x + 5 should be written <span>y = 2^x3 – x^2 – 4^x + 5. The
" ^ " symbol denotes exponentiation.
I see you're apparently in middle school. Is that so? If so, are you taking calculus already? If so, nice!
Case 1: You do not yet know calculus and have not differentiated or found critical values. Sketch the function </span>y = 2x^3 – x^2 – 4^x + 5, including the y-intercept at (0,5). Can you identify the intervals on which the graph appears to be increasing and those on which it appears to be decreasing?
Case 2: You do know differentiation, critical values and the first derivative test. Differentiate y = 2x^3 – x^2 – 4^x + 5 and set the derivative = to 0:
dy/dx = 6x^2 - 2x - 4 = 0. Reduce this by dividing all terms by 2:
dy/dx = 3x^2 - x - 2 = 0 I used synthetic div. to determine that one root is x = 2/3. Try it yourself. This leaves the coefficients of the other factor, (3x+3); this other factor is x = 3/(-3) = -1. Again, you should check this.
Now we have 2 roots: -1 and 2/3
Draw a number line. Locate the origin (0,0). Plot the points (-1, 0) and (2/3, 0). This subdivides the number line into 3 subintervals:
(-infinity, -1), (-1, 2/3) and (2/3, infinity).
Choose a test number from each interval and subst. it for x in the derivative formula above. If the derivative comes out +, the function is increasing on that interval; if -, the function is decreasing.
Ask all the questions you want, if this explanation is not sufficiently clear.