Answer:
$22.02
Step-by-step explanation:
3(6.75)(1.0875) = 22.021875 ≈ $22.02 (Assuming the store rounds down.)
The correct answer is a 191.1 ft 3
The compound inequality that represents the two following scenarios are:
- 65 < f ≤ 4
- 8 ≤ f ≤ 12
A compound inequality usually puts together two or more simple inequalities statements together.
Following the assumption from the given information that;
- a free single scoop cone = f
<h3>1.</h3>
The age group of individuals designated to receive the free single scoop cones is:
- people who are older than 65 i.e. > 65
- children that are 4 or under 4 i.e. ≤ 4
Thus, the compound inequality that is appropriate to express both conditions is:
<h3>
2.</h3>
- On Tuesdays, the least amount of flavors = 8
- The addition amount of extra flavors they can add = 4
Now, we can infer that the total amount of flavors = 8 + 4 = 12
Thus, the compound inequality that is appropriate to express both conditions is:
- Least amount of flavors ≤ f ≤ total amount of flavors
- 8 ≤ f ≤ 12
Therefore, we can conclude that the compound inequality that represents the two following scenarios are:
- 65 < f ≤ 4
- 8 ≤ f ≤ 12
Learn more about compound inequality here:
brainly.com/question/24540195?referrer=searchResults
The inverse, converse and contrapositive of a statement are used to determine the true values of the statement
<h3>How to determine the inverse, converse and contrapositive</h3>
As a general rule, we have:
If a conditional statement is: If p , then q .
Then:
- Inverse -> If not p , then not q .
- Converse -> If q , then p .
- Contrapositive -> If not q , then not p .
Using the above rule, we have:
<u>Statement 1</u>
- Inverse: If a parallelogram does not have a right angle, then it is not a rectangle.
- Converse: If a parallelogram is a rectangle, then it has a right angle.
- Contrapositive: If a parallelogram is a not rectangle, then it does not have a right angle.
All three statements above are true
<u>Statement 2</u>
- Inverse: If two angles of one triangle are not congruent to two angles of another, then the third angles are not congruent.
- Converse: If the third angles of two triangle are congruent, then the two angles are congruent to two angles of another
- Contrapositive: If the third angles of two triangle are not congruent, then the two angles are not congruent to two angles of another
All three statements above are also true
Read more about conditional statements at:
brainly.com/question/11073037