Answer:
H2SO3 + 2CsOH —> Cs2SO3 + 2H2O
Explanation:
When sulfurous acid react with caesium hydroxide, caesium sulfite and water are formed according to the equation:
H2SO3 + CsOH —> Cs2SO3 + H2O
Next, we balanced the equation by putting 2 in front of CsOH and 2 in front of H2O i.e
H2SO3 + 2CsOH —> Cs2SO3 + 2H2O
Answer: 65.38g of Ca(OH)2 is needed
Explanation:
From The equation of reaction
2 HCl + Ca ( OH ) 2 ⟶ CaCl 2 + 2 H 2 O
NB: Molar mass of HCl= 1+35.5=36.5
Ca(OH)2= 74
From The stoichiometric equation
2mol of HCl(36.5×2=73) require 1mol of Ca(OH)2 (74g)
Hence 64.5g of HCl will require 64.5×74/73= 65.38g of Ca(OH)2
<h2>
Hello!</h2>
The answer is:
The new volume will be 1 L.

<h2>
Why?</h2>
To solve the problem, since we are given the volume and the first and the second pressure, to calculate the new volume, we need to assume that the temperature is constant.
To solve this problem, we need to use Boyle's Law. Boyle's Law establishes when the temperature is kept constant, the pressure and the volume will be proportional.
Boyle's Law equation is:

So, we are given the information:

Then, isolating the new volume and substituting into the equation, we have:



Hence, the new volume will be 1 L.

Have a nice day!
Answer:
[ HClO₃] = 1.93M
Explanation:
X % by mass, means that in 100 g of solution, we have X g of solute.
In this case, 14.1 g of HClO₃ are contained in 100 g of solution.
Density always referrs to solution. Let's calculate the volume of solution.
Solution density = Solution mass / Solution volume
1.1690 g/mL = 100 g / Solution volume
Solution volume = 100 g /1.1690 g/mL → 86.2 mL.
For molarity we must get moles of solute and volume of solution (L), because molarity is mol/L
Let's convert the mL of solution in L
86.2 mL . 1L / 1000mL = 0.0862 L
Now, let's determine the moles of solute. (Mass / Molar mass)
14.1 g / 84.45 g/mol = 0.167 moles
Molarity is mol/L → 0.167 moles / 0.0862 L = 1.93M