Answer:
C: 
Explanation:
we can use the molarity equation

so to find M we plug in what we know, which is 6 moles of NaCl and 2 L of water, which gives us:

Answer:
3.33 L
Explanation:
We can solve this problem by using the equation:
Where the subscript 1 refers to one solution and subscript 2 to the another solution, meaning that in this case:
We input the data:
- 0.25 M * 100 L = 7.5 M * V₂
Thus the answer is 3.33 liters.
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol
Answer:
yeah its newton's third law
Explanation:
Answer:
D.
Explanation:
Although all of these answers are similar, it seems that all three are the answer. I am sorry if the answer ends up being B but I'm pretty sure the answer is D. Charles Darwin's evolution theory "evolved", get it, from the natural selection theory. The theory is described as "the process whereby organisms better adapted to their environment tend to survive and produce more offspring." However, some factors that effect natural selection are competition, selection and variation. I believe all three fit the answer and therefore I believe answer D is correct.