N=-6
-6 minus 6 is -12
-12 /3 is -4 since the negative doesn’t cancel out
Answer:
<em><u>-</u></em><em><u>1</u></em><em><u>0</u></em><em><u>.</u></em><em><u>2</u></em>
Step-by-step explanation:
<u>f</u><u>{</u><u>5</u><u>}</u> = <u>6</u><u>(</u><u>5</u><u>^</u><u>2</u><u>)</u><u> </u><u>+</u><u> </u><u>2</u><u>(</u><u>5</u><u>)</u><u> </u><u>-</u><u> </u><u>7</u>
g{-3}= 4(-3)-3
= <u>6</u><u>(</u><u>2</u><u>5</u><u>)</u><u> </u><u>+</u><u> </u><u>1</u><u>0</u><u> </u><u>-</u><u> </u><u>7</u>
-12 - 3
= <u>150</u><u> </u><u>+</u><u> </u><u>1</u><u>0</u><u> </u><u>-</u><u> </u><u>7</u>
- 15
= <u>1</u><u>5</u><u>3</u>
-15
= <u>-</u><u>5</u><u>1</u>
5
= <em><u>-</u></em><em><u>1</u></em><em><u>0</u></em><em><u>.</u></em><em><u>2</u></em>
Sum of polynomials are always polynomials.
Note that despite it's name, single constants, monomials, binomials, trinomials, and expressions with more than three terms are all polynomials.
For example,
0, π sqrt(2)x, 4x+2, x^2+3x+4, x^2-x^2, x^5+x/ π -1
are all polynomials.
What makes an expression NOT a polynomial?
Expressions that contain non-integer or negative powers of variables, rational functions, infinite series.
For example,
sqrt(x+1), 1/x+4, 1+x+ x^2/2!+x^3/3!+x^4/4!+...., (5x+3)/(6x+7)
are NOT polynomials.