Water is known as a life-giving liquid because every living organism depends on the water for its survival.
<h3>Journal about the topic Water-The Life Giving Liquid</h3>
Water is also called a life-giving liquid because without water life on earth is not possible. All other living organisms need to consume water to survive and grow in size. We need water for many other activities such as cleaning, washing, cooking and irrigation. Water is essential for all living things including humans, animals and plants. Water is called wonder liquid as it can dissolve large number of substances. This property enables water to be a great solvent. Most of the chemical reactions of the living world is carried out in water as a medium so that's why water is known as Life Giving Liquid.
So we can conclude that Water is known as a life-giving liquid because every living organism depends on the water for its survival.
Learn more about water here: brainly.com/question/1313076
#SPJ1
Answer:
left to right across a period when it decreases and when it increases top to bottom in a group,
hope i helped
Answer:
weighing balance/analytical balance
Graduated cylinder/buret
Explanation:
The mass of the evaporating basin could be measured using a weighing balance or an analytical balance. Both are classified as weighing scales but the analytical balance can measure the mass of objects up to 4 decimal places, thus, providing better accuracy in measurement than ordinary weighing balance that can only measure up to 2 decimal places.
In order to measure 50 cm3 of the sea water, a graduated cylinder or a buret can be used. Both equipment can measure up to the same decimal places and, thus, have virtually the same accuracy.
Answer:
The cation Fe3+ is formed when a. an atom of iron loses two electrons.
Explanation:
Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.