Answer:
C) 0.457
Explanation:
The ratio between O2 and H2O is 1:2 according to the balanced equation. You can find how many moles is O2 by : 5.12/22.4 = 0.22857 ( 1 mole = 22.4 litters)
Moles of H2O will be 0.22857 * 2 = 0.457142.
Therefore answer C)
Answer: The actions that must have affected the igneous rock in order to form the sedimentary rock is that (It must have been broken down into sediments).
Explanation:
Rocks are solid structures that occurs naturally which is made up of different minerals. There are three main types of rocks, these includes:
--> METAMORPHIC ROCKS: These are the type of rocks which are formed by temperature and pressure changes inside the Earth.
--> SEDIMENTARY ROCKS: these rocks are usually formed from pre-existing rocks through the process of weathering (breaking down) of rocks.
--> IGNEOUS ROCKS: these rocks are formed when molten magma cools beneath or above the earth surface.
The actions that must have affected the igneous rock in order to form the sedimentary rock is that the igneous rocks are broken down into smaller pieces by erosion and weathering processes. Sediments which are formed accumulates at the earth surface. Over a long period of time, these sediments builds successive layers on top of one another. The sediments near the base hardens to form sedimentary rocks. This justifies the statement as a correct option (It must have been broken down into sediments).
Answer is 14.5 g L⁻¹.
<em>Explanation;</em>
Here, the question says reduce the units as one.
The presented units are g/L. To reduce the units to one, what we can do is take L to the upper side.
This can be done according to the rules of indices;
1 / aˣ = a⁻ˣ
Like that, we can write 1 / L as L⁻¹.
Hence, the reduced unit is g L⁻¹.
But remember to keep a space between when writing two different units.
Actually, this is an unit for density.
The change in temperature (ΔT) : 56.14 ° C
<h3>Further explanation</h3>
Given
Cereal energy = 235,000 J
mass of water = 1000 g
Required
the change in temperature (ΔT)
Solution
Heat can be formulated :
Q = m . c . ΔT
c = specific heat for water = 4.186 J / gram ° C
235000 = 1000 . 4.186 . ΔT
