![\bf \begin{cases} f(x)=2x-1\\ g(x)=x^2+3x-1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ f(x)+g(x)\implies (2x-1)+(x^2+3x-1)\implies 2x+3x-1-1+x^2 \\\\\\ x^2+5x-2 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Af%28x%29%3D2x-1%5C%5C%0Ag%28x%29%3Dx%5E2%2B3x-1%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0Af%28x%29%2Bg%28x%29%5Cimplies%20%282x-1%29%2B%28x%5E2%2B3x-1%29%5Cimplies%202x%2B3x-1-1%2Bx%5E2%0A%5C%5C%5C%5C%5C%5C%0Ax%5E2%2B5x-2%0A%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill)
![\bf f(x)-g(x)\implies (2x-1)-(x^2+3x-1)\implies 2x-1-x^2-3x+1 \\\\\\ -x^2-x \\\\[-0.35em] ~\dotfill\\\\ f(x)\cdot g(x)\implies (2x-1)\cdot (x^2+3x-1) \\\\\\ \stackrel{2x(x^2+3x-1)}{2x^3+6x^2-2x}~~+~~\stackrel{-1(x^2+3x-1)}{(-x^2-3x+1)}\implies 2x^3+5x^2-5x+1 \\\\[-0.35em] ~\dotfill\\\\ \cfrac{f(x)}{g(x)}\implies \cfrac{2x-1}{x^2+3x-1}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29-g%28x%29%5Cimplies%20%282x-1%29-%28x%5E2%2B3x-1%29%5Cimplies%202x-1-x%5E2-3x%2B1%0A%5C%5C%5C%5C%5C%5C%0A-x%5E2-x%0A%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill%5C%5C%5C%5C%0Af%28x%29%5Ccdot%20g%28x%29%5Cimplies%20%282x-1%29%5Ccdot%20%28x%5E2%2B3x-1%29%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7B2x%28x%5E2%2B3x-1%29%7D%7B2x%5E3%2B6x%5E2-2x%7D~~%2B~~%5Cstackrel%7B-1%28x%5E2%2B3x-1%29%7D%7B%28-x%5E2-3x%2B1%29%7D%5Cimplies%202x%5E3%2B5x%5E2-5x%2B1%0A%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill%5C%5C%5C%5C%0A%5Ccfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%5Cimplies%20%5Ccfrac%7B2x-1%7D%7Bx%5E2%2B3x-1%7D)
the division doesn't simplify any further.
Answer:
See below for answers and explanations
Step-by-step explanation:
Top left: Since y can't be greater than 0 but is equal to 0, then the range is (-∞,0] and the domain is (-∞,∞) since there are no domain restrictions
Top right: Since both x and y have no restrictions, then the domain is (-∞,∞) and the range is (-∞,∞)
Bottom left: Since y cannot be less than 2 but equal to it, and x holds no domain restrictions, then the domain is (-∞,∞) and the range is [2,∞)
Bottom right: Since both x and y have no restrictions, then the domain is (-∞,∞) and the range is (-∞,∞)
Answer: -7
Step-by-step explanation: mark brainliest
<em>The</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>parallel</em><em>.</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>.</em>