Step-by-step explanation:







The answer is B.
Answer:

Step-by-step explanation:

State that the values where cos x is minimum:






Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that 
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus


Heights of 29.5 and below could be a problem.
(6 + 3) + 21 = 6 + (3 + 21)
It's an ASSOCIATIVE PROPERTY
(a + b) + c = a + (b + c)
The average is 2. To find the average you add all the numbers then divide the sum by the total amount of numbers.