Answer: 15
Step-by-step explanation:
(r+1)th term of
is given by:-

For
, n= 6

![=\ \dfrac{6!}{4!2!}a^4b^2\ \ \ [^nC_r=\dfrac{n!}{r!(n-r)!}]\\\\=\dfrac{6\times5\times4!}{4!\times2}a^4b^2\\\\=3\times5a^4b^2\\\\ =15a^4b^2](https://tex.z-dn.net/?f=%3D%5C%20%5Cdfrac%7B6%21%7D%7B4%212%21%7Da%5E4b%5E2%5C%20%5C%20%5C%20%5B%5EnC_r%3D%5Cdfrac%7Bn%21%7D%7Br%21%28n-r%29%21%7D%5D%5C%5C%5C%5C%3D%5Cdfrac%7B6%5Ctimes5%5Ctimes4%21%7D%7B4%21%5Ctimes2%7Da%5E4b%5E2%5C%5C%5C%5C%3D3%5Ctimes5a%5E4b%5E2%5C%5C%5C%5C%20%3D15a%5E4b%5E2)
Hence, the coefficient of the third term in the binomial expansion of
is 15.
your answer is 0.00011596
Answer:
Step-by-step explanation:
Let x represent the seating capacity
Number of seats = 40+x
Profit per seat = 10 - 0.20x
For maximum number of seats
P(x) = ( 40+x ) ( 10-0.20x )
P(x) = 400+10x-8x-0.2x^2
P(x) = 400+2x- 0.2x^2
Differentiating with respect to ( x )
= 2 - 0.4x
0.4x = 2
x = 2/0.4
x = 5
The seating capacity will be 40+5 = 45
For the maximum profits
40X10+ 9.9 + 9.8 + 9.7 + 9.6 + 9.5 + 9.4 + 9.3 + 9.2 + 9.1 + ... 1.0, 0.9, 0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1
= 400 + an arithmetic series (first term = 0.1, common difference = 0.1, number of terms = 8+ 40 = 48 )
= 400 + (48/2)(2X0.1 + (48-1)X0.1)
= 400 + 24(0.2 + 4.7)
= 400 + 24(4.9)
= 400 + 117.6
= 517.6
= 517.6dollars
Answer:
Y=4x+4
Step-by-step explanation:
if it grows 4 inches each year that means it's the slope
and 4 feet tall model is the y intercept cuz its what you begin with